Kundong Wang, Jianyun Liu, Lu Li, Shibo Xia, and Qingsheng Lu


  1. [1] G. Antoniou, C. Riga, E. Mayer, N Cheshire, and C Bicknell,Clinical applications of robotic technology in vascular andendovascular surgery, Journal of Vascular Surgery, 53(2), 2011,493–499.
  2. [2] H. Rafii-Tari, C. Payne, and G. Yang, Current and emergingrobot-assisted endovascular catheterization technologies: Areview, Annals of Biomedical Engineering, 42(4), 2013, 697–715.
  3. [3] P. Dario, E. Guglielmelli, and B. Allotta, Robotics for MedicalApplications, IEEE Robotics and Automation Magazine, 3(3),1996, 44–56.
  4. [4] K. Wang and B. Chen, Design and control method of surgicalrobot for vascular intervention operation, IEEE InternationalConference on Robotics and Biomimetics (ROBIO) ( IEEE,2016), 254–259.
  5. [5] J. Guo, S. Guo, N. Xiao, X. Ma, and S. Yoshida, A novelrobotic catheter system with force and visual feedback forvascular interventional surgery, Journal of Mechatronics andAutomation, 2(1), 2012, 5–24.
  6. [6] K. Wang, Q. Lu, B. Chen, et al. Endovascular interventionrobot with multi-manipulators for surgical procedures: Dex-terity, adaptability, and practicability, Robotics and ComputerIntegrated Manufacturing, 56, 2019, 75–84.
  7. [7] K. Wang, B. Chen, Q. Lu, et al. Design and performanceevaluation of real-time endovascular interventional surgicalrobotic system with high accuracy, The International Journalof Medical Robotics and Computer Assisted Surgery, 14(5),2018, e1915.
  8. [8] Q. Lu, Y. Shen, S. Xia, et al., A novel universal endovascularrobot for peripheral arterial stent–assisted angioplasty: Ini-tial experimental results, Vascular and Endovascular Surgery,54(7), 2020, 598–604.
  9. [9] K. Wang, X. Mai, W. Yan, et al., A novel SEA-based hapticforce feedback master hand controller for robotic endovascularintervention system, The International Journal of MedicalRobotics and Computer Assisted Surgery, 16(5), 2020, e2109.
  10. [10] H. Cha, B. Yi, and B. Won, An assembly-type master-slavecatheter and guidewire driving system for vascular intervention,Journal of Engineering in Medicine, 231(1), 2017, 69–79.
  11. [11] H Rafii-Tari, C. Riga, and C. Payne, Reducing contact forcesin the arch and supra-aortic vessels using the Magellan robot,Journal of Vascular Surgery, 64(5), 2016, 1422–1432.
  12. [12] W. Lu, W. Xu, and F. Pan, Clinical application of a vascularinterventional robot in cerebral angiography, InternationalJournal of Medical Robotics and Computer Assisted Surgery,12(1), 2016, 132–136.
  13. [13] J. Guo, S. Guo, and T. Tamiya, Design and performanceevaluation of a master controller for endovascular catheteri-216zation, International Journal of Computer Assisted Radiologyand Surgery, 11(1), 2016, 119–131.
  14. [14] S. Guo, J. Guo, and L. Shao, Performance evaluation ofthe novel grasper for a robotic catheter navigation system,IEEE International Conference on Information and Automa-tion (ICIA) (IEEE, 2014), 339–334.
  15. [15] M. Khoshnam and R. Patel. “Robotics-assisted control ofsteerable ablation catheters based on the analysis of tendon-Sheath transmission mechanisms, IEEE/ASME Transactionson Mechatronics, 22(3), 2017, 1473–1484.
  16. [16] J. Granada, J. Delgoda, and M. Uribe, First-in-human evalu-ation of a novel robotic-assisted coronary angioplasty system,JACC: Cardiovascular Interventions, 4(4), 2011, 460–465.
  17. [17] M. Negoro, M. Tanimoto, F. Arai, T. Fukuda, K. Fukasaku, andI. Takahashi, An intelligent catheter system robotic controlledcatheter system, Interventional Neuroradiology, 7(S1), 2001,111–113.
  18. [18] A. Al-Ahmad, D. Jessica, and P. Wang, Early experiencewith a computerized robotically controlled catheter system,Journal of Interventional Cardiac Electrophysiology, 12(3),2005, 199–202.
  19. [19] W. Saliba, J.E. Cummings, S. Oh, Y. Zhang, T.N. Maz-galev, R.A. Schweikert, J.D. Burkhardt, and A. Natale, Novelrobotic catheter remote control system: Feasibility and safetyof transseptal puncture and endocardial catheter navigation,Journal of Cardiovascular Electrophysiology, 17(10), 2006,1102–1105.
  20. [20] S. Ernst, F. Ouyang, C. Linder, K. Hertting, F. Stahl, J.Chun, H. Hachiya, D. Bansch, M. Antz, and K.H. Kuck, Initialexperience with remote catheter ablation using a novel magneticnavigation system: Magnetic remote catheter ablation, AccCurrent Journal Review, 13(6), 2004, 51–52.
  21. [21] A. Ryana, A. d’ Avila, E. Heist, T. Mela, J. Singh, J.Ruskin, and V. Reddy, Remote magnetic navigation to guideendocardial and epicardial catheter mapping of scar-relatedventricular tachycardia, Circulation, 115(10), 2007, 1191–2000.
  22. [22] J. Chun, S. Ernst, S. Matthews, B. Schmidt, D. Bansch, S.Boczor, A. Ujeyl, M. Antz, F. Ouyang, and K. Kuck, Remote-controlled catheter ablation of accessory pathways: Resultsfrom the magnetic laboratory, European Heart Journal, 28(2),2007, 190–195.
  23. [23] M. Mayyas and N. Kumar, Design and synthesis of com-pliant mechanism for 3D micro-grasping, International Jour-nal of Robotics and Automation, 36, 2021 (in press).https://doi.org/10.2316/J.2021.206-0614.
  24. [24] J. Krahn, F. Fabbro, and C. Menon, A soft-touch gripperfor grasping delicate objects, IEEE/ASME Transactions onMechatronics, 22(3), 2017, 1276–1286.
  25. [25] H. Banerjee, Z.T. Hritwick, and H.L. Ren, Soft robotics withcompliance and adaptation for biomedical applications andforthcoming challenges, International Journal of Robotics andAutomation, 33(1), 2017, 4981–4993.
  26. [26] Y. Hu, X. Wu, P. Geng, et al., Evolution strategies learningwith variable impedance control for grasping under uncertainty,IEEE Transactions on Industrial Electronics, 99(10), 2018,1–8.
  27. [27] Y. Hu, Z. Li, G. Li, et al., Development of sensory-motorfusion-based manipulation and grasping control for a robotichand-eye system, IEEE Transactions on Systems, Man, andCybernetics: System, 47(7), 2017, 1169–1180.
  28. [28] S. Oh and K. Kong, High-precision robust force control of aseries elastic actuator, IEEE/ASME Transactions on Mecha-tronics, 22(1), 2017, 71–80.

Important Links:

Go Back