Bo Han∗ and Li Xu∗


  1. [1] R. Mur-Artal, J.M.M. Montiel, and J.D. Tardos, ORB-SLAM:A versatile and accurate monocular SLAM system, IEEETransactions on Robotics, 31(5), 2015, 1147–1163.
  2. [2] C. Forster, M. Pizzoli, and D. Scaramuzza, SVO: Fast semi-direct monocular visual odometry, 2014 IEEE InternationalConference on Robotics and Automation (ICRA) (IEEE, HongKong, China, 2014), 15–22.
  3. [3] J. Engel, T. Sch¨ops, and D. Cremers, LSD-SLAM: Large-scaledirect monocular SLAM, European Conference on Computervision (Springer, Zurich, Switzerland, 2014), 834–849.
  4. [4] J. Engel, V. Koltun, and D. Cremers, Direct sparse odom-etry, IEEE Transactions on Pattern Analysis and MachineIntelligence, 40(3), 2017, 611–625.
  5. [5] G. Klein and D. Murray, Parallel tracking and mapping forsmall AR workspaces, Proceedings of the 2007 6th IEEEand ACM International Symposium on Mixed and AugmentedReality (IEEE Computer Society, Nara, Japan, 2007), 1–10.
  6. [6] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, Fully convolutionalinstance-aware semantic segmentation, Proceedings of the IEEEConference on Computer Vision and Pattern Recognition,Honolulu, HI, USA, 2017, 2359–2367.
  7. [7] R. Mur-Artal and J.D. Tard´os, Probabilistic semi-dense map-ping from highly accurate feature-based monocular SLAM,Robotics: Science and Systems, Rome, 2015.
  8. [8] S. Bu, Y. Zhao, G. Wan, K. Li, G. Cheng, and Z. Liu, Semi-direct tracking and mapping with RGB-D camera for MAV,Multimedia Tools and Applications, 76(3), 2017, 4445–4469.
  9. [9] P. Kim, H. Lee, and H.J. Kim, Autonomous flight withrobust visual odometry under dynamic lighting conditions,Autonomous Robots, 43(6), 2019, 1605–1622.
  10. [10] N. Krombach, D. Droeschel, and S. Behnke, Combiningfeature-based and direct methods for semi-dense real-timestereo visual odometry, International Conference on Intelli-gent Autonomous Systems (Springer, Shanghai, China, 2016),855–868.
  11. [11] D. G´alvez-L´opez and J.D. Tardos, Bags of binary words forfast place recognition in image sequences, IEEE Transactionson Robotics, 28(5), 2012, 1188–1197.
  12. [12] X. Gao, R. Wang, N. Demmel, and D. Cremers, LDSO:Direct sparse odometry with loop closure, 2018 IEEE/RSJInternational Conference on Intelligent Robots and Systems(IROS) (IEEE, Madrid, Spain, 2018), 2198–2204.
  13. [13] Z. Liang and Y. Chen, Closed-loop detection algorithm usingvisual words, International Journal of Robotics and Automa-tion, 29(2), 2014, 155–161.
  14. [14] C. Chen and H. Wang, Large-scale loop-closing by fusing rangedata and aerial image, International Journal of Robotics andAutomation, 22(2), 2007, 160–169.
  15. [15] H. Omranpour and S. Shiry, Reduced search space algorithmfor simultaneous localization and mapping in mobile robots,IAES International Journal of Robotics and Automation, 1(1),2012, 49.
  16. [16] N. Merrill and G. Huang, Lightweight unsupervised deep loopclosure, Proceedings of Robotics: Science and Systems (RSS),Pittsburgh, PA, June 26–30, 2018.
  17. [17] J. Shimamura, M. Morimoto, and H. Koike, Robust vSLAMfor dynamic scenes, MVA, Nara, Japan, 2011, 344–347.
  18. [18] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao, Robustmonocular SLAM in dynamic environments, 2013 IEEE In-ternational Symposium on Mixed and Augmented Reality (IS-MAR) (IEEE, Adelaide, SA, Australia, 2013), 209–218.
  19. [19] N.D. Reddy, P. Singhal, V. Chari, and K.M. Krishna, Dynamicbody vSLAM with semantic constraints, 2015 IEEE/RSJInternational Conference on Intelligent Robots and Systems(IROS) (IEEE, 2015), 1897–1904.
  20. [20] J.P. Valentin, S. Sengupta, J. Warrell, A. Shahrokni, and P.H.Torr, Mesh based semantic modelling for indoor and outdoorscenes, Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition, Portland, Oregon, USA, 2013,2067–2074.
  21. [21] J. McCormac, A. Handa, A. Davison, and S. Leutenegger,Semanticfusion: Dense 3D semantic mapping with convo-lutional neural networks, 2017 IEEE International Confer-ence on Robotics and Automation (ICRA) (IEEE, 2017),4628–4635.
  22. [22] K. Tateno, F. Tombari, I. Laina, and N. Navab, CNN-SLAM,Real-time dense monocular SLAM with learned depth pre-diction, Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition, Honolulu, HI, USA, 2017,6243–6252.
  23. [23] A. Kundu, Y. Li, F. Dellaert, F. Li, and J.M. Rehg, Jointsemantic segmentation and 3D reconstruction from monocularvideo, European Conference on Computer Vision (Springer,2014), 703–718.
  24. [24] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, andA. Davison, Elasticfusion: Dense SLAM without a pose graph,Robotics: Science and Systems, Rome, Italy, 2015.
  25. [25] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng,Z. Liu, J. Shi, W. Ouyang, et al., Hybrid task cascade forinstance segmentation, Proceedings of the IEEE Conference onComputer Vision and Pattern Recognition, Long Beach, CA,USA, 2019, 4974–4983.
  26. [26] B. Han and L. Xu, A monocular SLAM system with maskloop closing, 2020 Chinese Control And Decision Conference(CCDC) (IEEE, Hefei, China, 2020), 4762–4768.
  27. [27] J. Sivic and A. Zisserman, Video Google: A text retrievalapproach to object matching in videos, Proceedings Ninth IEEEInternational Conference on Computer Vision (IEEE, Nice,France, 2003), 1470.
  28. [28] S.H. Lee and J. Civera, Loosely-coupled semi-direct monocularSLAM, IEEE Robotics and Automation Letters, 4(2), 2018,399–406.
  29. [29] J. Engel, V. Usenko, and D. Cremers, A photometricallycalibrated benchmark for monocular visual odometry, arXivpreprint arXiv:1607.02555, 2016.113

Important Links:

Go Back