Qiang Zou,∗ Ming Cong,∗ Dong Liu,∗ and Yu Du∗∗


  1. [1] E.C. Tolman, Cognitive maps in rats and men, PsychologicalReview, 55(4), 1948, 189–208.
  2. [2] E.I. Moser, M.B. Moser, and B.L. McNaughton, Spatial rep-resentation in the hippocampal formation: a history, NatureNeuroscience, 20(11), 2017, 1448–2464.
  3. [3] H. Eichenbaum, The role of the hippocampus in navigation ismemory, Journal of Neurophysiology, 117(4), 2017, 1785–1796.
  4. [4] E. Tulving, Episodic and semantic memory, Organization ofMemory, 381(79), 1972, 381–403.
  5. [5] H.J. Tang, R. Yan, and K.C. Tan, Cognitive navigation byneuro-inspired localization, mapping, and episodic memory,IEEE Transactions on Cognitive and Developmental Systems,10(3), 2018, 751–761.
  6. [6] K.L. Stachenfeld, M.M. Botvinick, and S.J. Gershman, The hip-pocampus as a predictive map, Nature Neuroscience, 20(11),2017, 1643–1653.
  7. [7] T. Strosslin, D. Sheynikhovich, and R. Chavarriaga, Robustself-localization and navigation based on hippocampal placecells, Neural Networks, 18(9), 2005, 1125–1140.
  8. [8] M.B. Moser, D.C. Rowland, and E.I. Moser, Place cells, gridcells, and memory, Cold Spring Harbor Perspectives Biology,7(2), 2015, 1–15.
  9. [9] E.I. Moser, E. Kropff, and M.B. Moser, Place cells, grid cells,and the brain’s spatial representation system, Annual Reviewof Neuroscience, 31(1), 2008, 69–89.95
  10. [10] N. Cuperlier, M. Quoy, and P. Gaussier, Neurobiologicallyinspired mobile robot navigation and planning, Frontiers inNeurorobotics, 1(3), 2007, 1–15.
  11. [11] Q. Zou, M. Cong, D. Liu, and Y. Du, Robotic path planningbased on episodic-cognitive map, International Journal ofControl Automation and Systems, 17(5), 2019, 1304–1313.
  12. [12] M. Yuan, B. Tian, and V.A. Shim, An entorhinal-hippocampalmodel for simultaneous cognitive map building, Twenty-NinthAAAI Conference on Artificial Intelligence, Austin, USA, 2015,586–592.
  13. [13] A. Jauffret, N. Cuperlier, and P. Gaussier, From grid cellsand visual place cells to multimodal place cell: a new roboticarchitecture, Frontiers in Neurorobotics, 9(1), 2015, 1–22.
  14. [14] G. Tejera, M. LIofriu, A. Barrera and A. Weitzenfeld, Bio-inspired robotics: a spatial cognition model integrating placecells, grid cells and head direction cells, Journal of Intelligent& Robotic Systems, 91(1), 2018, 85–99.
  15. [15] N.G. Yu, Y.H. Yuan, T. Li, and X.J. Jiang et. al, A cognitivemap building algorithm by means of cognitive mechanism ofhippocampus, ACTA Automatic Sinica, 44(1), 2018, 52–73.
  16. [16] N.G. Yu, Y.J. Zhai, Y.H. Yuan, and Z.X. Wang et al., A bionicrobot navigation algorithm based on cognitive mechanism ofhippocampus, IEEE Transactions on Automation Science andEngineering, 16(4), 2019, 1640–1652.
  17. [17] D. Ball, S. Heath, J. Wiles, and G. Wyeth et. al., OpenRat-SLAM: an open source brain-based SLAM system, AutonomousRobots, 34(3), 2013, 149–176.
  18. [18] J.J. Ni, Y. Chen, K. Wang, and S.X. Yang, An improved vision-based SLAM approach inspired from animal spatial cognition,International Journal of Robotics & Automation, 34(5), 2019,491–502.
  19. [19] T.P. Zeng, and B.L. Si, A brain-inspired compact cognitivemapping system, Cognitive Neurodynamics, published online,2020, doi: 10.1007/s11571-020-09621-6.
  20. [20] A.M. Nuxoll, and J.E. Laird, Enhancing intelligent agents withepisodic memory, Cognitive Systems Research, 17–18, 2012,34–48.
  21. [21] Y. Burak, and I.R. Fiete, Accurate path integration in continu-ous attractor network models of grid cells, Plos ComputationalBiology, 5(2), 2009, 1–16.
  22. [22] Z.W. Liang, and Y.Y. Chen, Closed-loop detection algorithmusing visual words, International Journal of Robotics & Au-tomation, 29(2), 2014, 155–161.

Important Links:

Go Back