Zisen Hua,∗,∗∗ Xuewen Rong,∗∗∗ Yaru Sun,∗,∗∗ Yibin Li,∗∗∗ Hui Chai,∗∗∗ and Chengjun Wang∗,∗∗


  1. [1] M.H. Raibert, Legged Robots that Balance (Cambridge: MITPress, 1986).
  2. [2] C. Semini, et al., Design of the hydraulically actuated, torque-controlled quadruped robot HyQ2Max, IEEE/ASME Trans-actions on Mechatronics, 22(2), 2016, 635–646.
  3. [3] C.J. Liu, Q.J. Chen, and D.W. Wang, Locomotion control ofquadruped robots based on workspace trajectory modulations,International Journal of Robotics & Automation, 27(4), 2012,345-354.
  4. [4] J.A. Galvez, J. Estremera, P.G. De Santos, A new legged-robotconfiguration for research in force distribution, Mechatronics,13(8–9), 2003, 907–932.85
  5. [5] G. Zhang, et al., Active compliance control of the hydraulicactuated leg prototype, Assembly Automation, 37(3), 2017,356–368.
  6. [6] C. Semini, et al., Design of HyQ–a hydraulically and electricallyactuated quadruped robot, Proceedings of the Institution ofMechanical Engineers, Part I: Journal of Systems and ControlEngineering, 225(6), 2011, 831–849.
  7. [7] I.W. Hunter, J. M. Hollerbach, and J. Ballantyne, A compar-ative analysis of actuator technologies for robotics, RoboticsReview, 2, 1991, 299–342.
  8. [8] F. Basile, P. Chiacchio, and D. Del Grosso, Implementationof hydraulic servo controllers with only position measure,International Journal of Robotics & Automation, 24(1), 2009,20.
  9. [9] J.E. Huber, N.A. Fleck, and M.F. Ashby, The selection of me-chanical actuators based on performance indices, Proceedings ofthe Royal Society of London. Series A: Mathematical, Physicaland Engineering Sciences, 453(1965), 1997, 2185–2205.
  10. [10] M. Raibert, et al., Bigdog, the rough-terrain quadruped robot,IFAC Proceedings Volumes, 41(2), 2008, 10822–10825.
  11. [11] C. Semini, HyQ-design and development of a hydraulicallyactuated quadruped robot, Doctor of Philosophy (Ph. D.),University of Genoa, Italy, 2010.
  12. [12] S.-H. Hyon and G. Cheng, Gravity compensation and full-body balancing for humanoid robots, 2006 6th IEEE-RASInternational Conference on Humanoid Robots. IEEE, 2006,214–221.
  13. [13] G. Nelson, et al., Petman: A humanoid robot for testingchemical protective clothing, Journal of the Robotics Societyof Japan, 30(4), 2012, 372–377.
  14. [14] H.E. Merritt, Hydraulic Control Systems (John Wiley & Sons,Wiley, U.S.A, 1991).
  15. [15] M. Raibert, M. Chepponis, and H.B.J.R. Brown, Running onfour legs as though they were one, IEEE Journal on Roboticsand Automation, 2(2), 1986, 70–82.
  16. [16] X. Rong, et al., Design and simulation for a hydraulic ac-tuated quadruped robot, Journal of Mechanical Science andTechnology, 26(4), 2012, 1171–1177.
  17. [17] M. Buehler, et al., SCOUT: A simple quadruped that walks,climbs, and runs, Proceedings 1998 IEEE International Con-ference on Robotics and Automation (Cat. No. 98CH36146).IEEE, Leuven, Belgium, 1998, 1707–1712.
  18. [18] G.A. Pratt and M.M. Williamson, Series elastic actuators,Proceedings 1995 IEEE/RSJ International Conference onIntelligent Robots and Systems, Human Robot Interactionand Cooperative Robots. IEEE, Pittsburgh, PA, USA, 1995,399–406.
  19. [19] H. Zheng, M. Wu, and X. Shen, A pneumatic variable se-ries elastic actuator-powered transtibial prosthesis, Interna-tional Journal of Robotics and Automation, 35(6), 2020,408–418.
  20. [20] H. Kimura, Y. Fukuoka, and A.H. Cohen, Adaptive dynamicwalking of a quadruped robot on natural ground based onbiological concepts, The International Journal of RoboticsResearch, 26(5), 2007, 475–490.
  21. [21] I. Poulakakis, J.A. Smith, and M. Buehler, Modeling and ex-periments of untethered quadrupedal running with a boundinggait: The Scout II robot, The International Journal of RoboticsResearch, 24(4), 2005, 239–256.
  22. [22] J.G. Nichol, et al., System design of a quadrupedal gallopingmachine, The International Journal of Robotics Research,23(10–11), 2004, 1013–1027.
  23. [23] B. Vanderborght, et al., Variable impedance actuators: Areview, Robotics and Autonomous Systems, 61(12), 2013,1601–1614.
  24. [24] S. Wolf, et al., Variable stiffness actuators: Review on designand components, IEEE/ASME Transactions on Mechatronics,21(5), 2015, 2418–2430.
  25. [25] S.S. Groothuis, et al., The variable stiffness actuator vsaUT-II:Mechanical design, modeling, and identification, IEEE/ASMETransactions on Mechatronics, 19(2), 2013, 589–597.
  26. [26] C. Ding, et al., A lateral impact recovery method forquadruped robot with step height compensation, Interna-tional Journal of Robotics and Automation, 35(3), 2020,199–208.
  27. [27] M. Jelali and A. Kroll, Hydraulic Servo-Systems: Modelling,Identification and Control (Springer Science & Business Media,Springer-Verlag, London, 2012).
  28. [28] V. Barasuol, et al., Highly-integrated hydraulic smart actuatorsand smart manifolds for high-bandwidth force control, Frontiersin Robotics and AI, 5, 2018, 51.
  29. [29] H.E. Merritt, Hydraulic Control Systems (John Wiley & Sons,Springer, Germany, 1991).
  30. [30] T. Boaventura, et al., Model-based hydraulic impedance controlfor dynamic robots, IEEE Transactions on Robotics, 31(6),2015, 1324–1336.
  31. [31] T. Boaventura, Hydraulic compliance control of the quadrupedrobot HyQ, Doctor of Philosophy, Ph.D. Thesis, AdvancedRobotics Department, University of Genova, Genova, 2013.
  32. [32] G. Niu, et al., Evaluation and selection of accumulator sizein electric-hydraulic hybrid (EH2) powertrain, 2016 IEEETransportation Electrification Conference and Expo (ITEC),IEEE, Dearborn, MI, USA, 2016, 1–6.
  33. [33] W.S. Levine, The Control Handbook: Control System Funda-mentals (CRC Press, U.S.A, 2010).
  34. [34] S.-C. Wu and E.J. Haug, A substructure technique for dynamicsof flexible mechanical systems with contact-impact, Journal ofMechanical Design, 112(3), 1990, 390–398.

Important Links:

Go Back