FRAMEWORK OF HYBRID RENEWABLE ENERGYWITH CONVENTIONAL POWER GENERATION SCHEDULING USING NOVEL METAHEURISTIC OPTIMIZATION ALGORITHM

Kingsuk Majumdar, Provas K. Roy and Subrata Banerjee

References

  1. [1] A.R. Bergen, Power systems analysis, 2009
  2. [2] G.C. Ejebe, J. Tong, J. Waight, J. Frame, X. Wang and W. Tinney, Available transfer capability calculations, IEEE Transactions on Power systems, 13, 1998, 1521-1527
  3. [3] H.-D. Chiang and H. Li, On-line ATC evaluation for large-scale power systems: Framework and tool, 2005
  4. [4] L. Xie, Y. Chen and H. Liao, Distributed online monitoring of quasi-static voltage collapse in multi-area power systems, IEEE Transactions on Power Systems, 27, 2012, 2271-2279
  5. [5] Q. Morante, N. Ranaldo, A. Vaccaro and E. Zimeo, Pervasive grid for large-scale power systems contingency analysis, IEEE Transactions on Industrial Informatics, 2, 2006, 165-175
  6. [6] A.K. Barisal, N.C. Sahu, R.C. Prusty and P.K. Hota, Short-term hydrothermal scheduling using gravitational search algorithm, 2012, 1-6
  7. [7] G.L. Decker and A.D. Brooks, Valve point loading of turbines, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 77, 1958, 481-484
  8. [8] M.I. Alomoush, Application of the stochastic fractal search algorithm and compromise programming to combined heat and power economic–emission dispatch, Engineering Optimization, 2019, 1-19
  9. [9] M. Saeedi, M. Moradi, M. Hosseini, A. Emamifar and N. Ghadimi, Robust optimization based optimal chiller loading under cooling demand uncertainty, Applied Thermal Engineering, 148, 2019, 1081-1091
  10. [10] N. Kumar, I. Hussain, B. Singh and B.K. Panigrahi, Self-adaptive incremental conductance algorithm for swift and ripple-free maximum power harvesting from PV array, IEEE Transactions on Industrial Informatics, 14, 2017, 2031-2041
  11. [11] N. Kumar, I. Hussain, B. Singh and B.K. Panigrahi, Mppt in dynamic condition of partially shaded PV system by using WODE technique, IEEE Transactions on Sustainable Energy, 8, 2017, 1204-1214
  12. [12] O. Abedinia, M. Zareinejad, M.H. Doranehgard, G. Fathi and N. Ghadimi, Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust-stochastic approach, Journal of Cleaner Production, 215, 2019, 878-889
  13. [13] N. Ghadimi, A. Akbarimajd, H. Shayeghi and O. Abedinia, Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting, Energy, 161, 2018, 130-142
  14. [14] S. Mirjalili, S.M. Mirjalili and A. Lewis, Grey wolf optimizer, Advances in Engineering Software, 69, 2014, 46-61
  15. [15] K. Majumdar, P. Das, P.K. Roy and S. Banerjee, Solving OPF problems using biogeography based and grey wolf optimization techniques, International Journal of Energy Optimization and Engineering (IJEOE), 6, 2017, 55-77
  16. [16] K. Zervoudakis and S. Tsafarakis, A mayfly optimization algorithm, Computers & Industrial Engineering, 106559, 2020
  17. [17] R. Eberhart and J. Kennedy, Particle swarm optimization, 4, 1942-1948
  18. [18] R.B. Goldberg, S.J. Barker and L. Perez-Grau, Regulation of gene expression during plant embryogenesis, Cell, 56, 1989, 149-160
  19. [19] M. Cornick, B. Hunt, E. Ott, H. Kurtuldu and M.F. Schatz, State and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh–Bénard convection, Chaos: An Interdisciplinary Journal of Nonlinear Science, 19, 2009, 013108-
  20. [20] S.A. Gaganpreet Kaur, Chaotic whale optimization algorithm, Journal of Computational Design and Engineering, 5, 2018, 275-284

Important Links:

Go Back