A HYBRID GRIPPER AND ITS CLAMPING FORCE CONTROL FOR LONG-SEGMENT DEVICES IN ROBOTIC ENDOVASCULAR INTERVENTION SYSTEM

Kundong Wang∗,† Jianyun Liu,∗ Lu Li∗∗,† Shibo Xia,∗∗∗ and Qingsheng Lu∗∗∗

References

  1. [1] G. Antoniou, C. Riga, E. Mayer, N Cheshire, and C Bicknell, Clinical applications of robotic technology in vascular and endovascular surgery, Journal of Vascular Surgery, 53(2), 2011, 493–499.
  2. [2] H. Rafii-Tari, C. Payne, and G. Yang, Current and emerging robot-assisted endovascular catheterization technologies: A review, Annals of Biomedical Engineering, 42(4), 2013, 697– 715.
  3. [3] P. Dario, E. Guglielmelli, and B. Allotta, Robotics for Medical Applications, IEEE Robotics and Automation Magazine, 3(3), 1996, 44–56.
  4. [4] K. Wang and B. Chen, Design and control method of surgical robot for vascular intervention operation, IEEE International Conference on Robotics and Biomimetics (ROBIO) ( IEEE, 2016), 254–259.
  5. [5] J. Guo, S. Guo, N. Xiao, X. Ma, and S. Yoshida, A novel robotic catheter system with force and visual feedback for vascular interventional surgery, Journal of Mechatronics and Automation, 2(1), 2012, 5–24.
  6. [6] K. Wang, Q. Lu, B. Chen, et al. Endovascular intervention robot with multi-manipulators for surgical procedures: Dexterity, adaptability, and practicability, Robotics and Computer Integrated Manufacturing, 56, 2019, 75–84.
  7. [7] K. Wang, B. Chen, Q. Lu, et al. Design and performance evaluation of real-time endovascular interventional surgical robotic system with high accuracy, The International Journal of Medical Robotics and Computer Assisted Surgery, 14(5), 2018, e1915.
  8. [8] Q. Lu, Y. Shen, S. Xia, et al., A novel universal endovascular robot for peripheral arterial stent–assisted angioplasty: Initial experimental results, Vascular and Endovascular Surgery, 54(7), 2020, 598–604.
  9. [9] K. Wang, X. Mai, W. Yan, et al., A novel SEA-based haptic force feedback master hand controller for robotic endovascular intervention system, The International Journal of Medical Robotics and Computer Assisted Surgery, 16(5), 2020, e2109.
  10. [10] H. Cha, B. Yi, and B. Won, An assembly-type master-slave catheter and guidewire driving system for vascular intervention, Journal of Engineering in Medicine, 231(1), 2017, 69–79.
  11. [11] H Rafii-Tari, C. Riga, and C. Payne, Reducing contact forces in the arch and supra-aortic vessels using the Magellan robot, Journal of Vascular Surgery, 64(5), 2016, 1422–1432.
  12. [12] W. Lu, W. Xu, and F. Pan, Clinical application of a vascular interventional robot in cerebral angiography, International Journal of Medical Robotics and Computer Assisted Surgery, 12(1), 2016, 132–136.
  13. [13] J. Guo, S. Guo, and T. Tamiya, Design and performance evaluation of a master controller for endovascular catheteri8 zation, International Journal of Computer Assisted Radiology and Surgery, 11(1), 2016, 119–131.
  14. [14] S. Guo, J. Guo, and L. Shao, Performance evaluation of the novel grasper for a robotic catheter navigation system, IEEE International Conference on Information and Automation (ICIA) (IEEE, 2014), 339–334.
  15. [15] M. Khoshnam and R. Patel. “Robotics-assisted control of steerable ablation catheters based on the analysis of tendonSheath transmission mechanisms, IEEE/ASME Transactions on Mechatronics, 22(3), 2017, 1473–1484.
  16. [16] J. Granada, J. Delgoda, and M. Uribe, First-in-human evaluation of a novel robotic-assisted coronary angioplasty system, JACC: Cardiovascular Interventions, 4(4), 2011, 460–465.
  17. [17] M. Negoro, M. Tanimoto, F. Arai, T. Fukuda, K. Fukasaku, and I. Takahashi, An intelligent catheter system robotic controlled catheter system, Interventional Neuroradiology, 7(S1), 2001, 111–113.
  18. [18] A. Al-Ahmad, D. Jessica, and P. Wang, Early experience with a computerized robotically controlled catheter system, Journal of Interventional Cardiac Electrophysiology, 12(3), 2005, 199–202.
  19. [19] W. Saliba, J.E. Cummings, S. Oh, Y. Zhang, T.N. Mazgalev, R.A. Schweikert, J.D. Burkhardt, and A. Natale, Novel robotic catheter remote control system: Feasibility and safety of transseptal puncture and endocardial catheter navigation, Journal of Cardiovascular Electrophysiology, 17(10), 2006, 1102–1105.
  20. [20] S. Ernst, F. Ouyang, C. Linder, K. Hertting, F. Stahl, J. Chun, H. Hachiya, D. Bansch, M. Antz, and K.H. Kuck, Initial experience with remote catheter ablation using a novel magnetic navigation system: Magnetic remote catheter ablation, Acc Current Journal Review, 13(6), 2004, 51–52. ?
  21. [21] A. Ryana, A. d’ Avila, E. Heist, T. Mela, J. Singh, J. Ruskin, and V. Reddy, Remote magnetic navigation to guide endocardial and epicardial catheter mapping of scar-related ventricular tachycardia, Circulation, 115(10), 2007, 1191– 2000.?
  22. [22] J. Chun, S. Ernst, S. Matthews, B. Schmidt, D. Bansch, S. Boczor, A. Ujeyl, M. Antz, F. Ouyang, and K. Kuck, Remotecontrolled catheter ablation of accessory pathways: Results from the magnetic laboratory, European Heart Journal, 28(2), 2007, 190–195.
  23. [23] M. Mayyas and N. Kumar, Design and synthesis of compliant mechanism for 3D micro-grasping, International Journal of Robotics and Automation, 36, 2021 (in press). https://doi.org/10.2316/J.2021.206-0614
  24. [24] J. Krahn, F. Fabbro, and C. Menon, A soft-touch gripper for grasping delicate objects, IEEE/ASME Transactions on Mechatronics, 22(3), 2017, 1276–1286.
  25. [25] H. Banerjee, Z.T. Hritwick, and H.L. Ren, Soft robotics with compliance and adaptation for biomedical applications and forthcoming challenges, International Journal of Robotics and Automation, 33(1), 2017, 4981–4993.
  26. [26] Y. Hu, X. Wu, P. Geng, et al., Evolution strategies learning with variable impedance control for grasping under uncertainty, IEEE Transactions on Industrial Electronics, 99(10), 2018, 1–8.
  27. [27] Y. Hu, Z. Li, G. Li, et al., Development of sensory-motor fusion-based manipulation and grasping control for a robotic hand-eye system, IEEE Transactions on Systems, Man, and Cybernetics: System, 47(7), 2017, 1169–1180.
  28. [28] S. Oh and K. Kong, High-precision robust force control of a series elastic actuator, IEEE/ASME Transactions on Mechatronics, 22(1), 2017, 71–80.

Important Links:

Go Back