ELECTRO-MECHANICAL MODEL AND ITS APPLICATION TO BIPED-ROBOT STABILITY WITH FORCE SENSORS

Tapas K. Maiti,∗ Sunandan Dutta,∗∗ Yoshihiro Ochi,∗∗ Mitiko Miura-Mattausch,∗∗ and Hans J. Mattausch∗∗

References

  1. [1] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to humanoid robotics (Berlin Heidelberg: Springer-Verlag, 2014).
  2. [2] B. Siciliano and O. Khatib, Springer handbook of robotics (Berlin Heidelberg: Springer-Verlag, 2008).
  3. [3] P. Chattopadhyay, S. K. Ghoshal, and A. Majumder, Implementation of piecewise sine functions on limbless robot locomotion, International Journal of Robotics and Automation, 35(4), 2020, doi: 10.2316/j.2020.206-0159.
  4. [4] L. Tong, F. Zhang, Z. Hou, W. Wang, and L. Peng, BPAR based human joint angle estimation using multi-channel sEMG, International Journal of Robotics and Automation, 30(3), 2015, 227–237.
  5. [5] O. Tutsoy, CPG based RL algorithm learns to control of a humanoid robot leg, International Journal of Robotics Automation 30(2), 2015, 1–7.
  6. [6] X. Da, R. Hartley, and J. W. Grizzle, Supervised learning for stabilizing under actuated bipedal robot locomotion with outdoor experiments on the wave field, IEEE International Conference on Robotics and Automation, Singapore, 2017, 3476–3483.
  7. [7] F. Samadi, S. Khanmohammadi, and A. R. Ghiasi, Foot and body control of humanoid robots using fuzzy controller, International Journal of Robotics and Automation, 32(4), 2017, doi: 10.2316/Journal.206.2017.4.206-4004.
  8. [8] S. Erden and J. A. Jonkman, Physical human-robot interaction by observing actuator currents, International Journal of Robotics and Automation, 27(3), 2012, 233–243.
  9. [9] R. Zhao and D. Sidobre, A framework for human-robot interaction in collaborative manufacturing environments, International Journal of Robotics and Automation, 34(6), 2019, doi: 10.2316/J.2019.206-0220.
  10. [10] M. Vukobratovic and B. Borovac, Zero-moment point – thirty five years of its life, International Journal of Humanoid Robotics, 1(1), 2004, 157–173.
  11. [11] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, and L. Montesano, The iCub humanoid robot: an open-systems platform for research in cognitive development, Neural Networks, 23(8), 2010, 1125–1134.
  12. [12] SoftBank Robotics, 2018, https://www.softbankrobotics.com
  13. [13] ASIMO Technical Information, Honda Motor Co., Ltd., 2007.
  14. [14] S. Feng, X. Xinjilefu, C. Atkeson, and J. Kim, Optimization based controller design and implementation for the atlas robot in the DARPA robotics challenge finals, IEEE-RAS International Conference on Humanoid Robots, Seoul, Korea, 2015, 1028–1035.
  15. [15] K. Kaneko, F. Kanehiro, M. Morisawa, T. Tsuji, K. Miura, S. Nakaoka, S. Kajita, and K. Yokoi, Hardware improvement of cybernetic human HRP-4C for entertainment use, IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, 2011, 4392–4399.
  16. [16] J. Y. Kim, I. W. Park, and J. H. Oh, Experimental realization of dynamic walking of the biped humanoid robot KHR-2 using zero moment point feedback and inertial measurement, Advanced Robotics, 20(6), 2006, 707–736.
  17. [17] I.-W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh, Mechanical design of the humanoid robot platform HUBO, Advanced Robotics, 21(11), 2007, 1305–1322.
  18. [18] Z. Tan, Study on mechanics laws for anthropomorphic biped robots to walk dynamically on sloping surface, IEEE International Conference on Robotics and Automation (ICRA), Minneapolis, Minnesota, 1996, 252–257.
  19. [19] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan, 2003, 1620–1626.
  20. [20] F. Ali, A. Z. H. Shukor, M. F. Miskon, M. K. Nor, and S. I. M. Salim, 3-D biped robot walking along slope with dual length linear inverted pendulum method (DLLIPM), International Journal of Advanced Robotic Systems, 10(11), 2013, 377–388.
  21. [21] F. Guo, T. Mei, M. Ceccarelli, Z. Zhao, T. L. and J. Zhao, A generic walking pattern generation method for humanoid robot walking on the slope, Industrial Robot: An International Journal, 43(3), 2016, 317-327.
  22. [22] L. Meng, M. Ceccarelli, Z. Yu, X. Chen, and Q. Huang, An experimental characterization of human falling down, Mechanical Sciences, 8 (1), 2017, 79-89.
  23. [23] L. Capisani and A. Ferrara, Trajectory planning and secondorder sliding mode motion/interaction control for robot 12 manipulators in unknown environments, IEEE Transactions on Industrial Electronics, 59(8), 2012, 3189–3198.
  24. [24] N. Hogan, A general actuator model based on nonlinear equivalent networks, IEEE /ASME Transactions on Mechatronics, 19(6), 2014, 1929–1939.
  25. [25] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control (New York: John Wiley & Sons, 2006).
  26. [26] J. Chen, M. Henrie, M. F. Mar, and M. Nizic, Mixed-signal methodology guide (Cadence Design Systems Inc., 2012).
  27. [27] SystemVision Multi-Discipline Development Environment: Integrated, scalable environment for circuit, system and mechatronic modeling, 2018. https://www.mentor.com/ products/sm/system integration simulation analysis/systemvision/
  28. [28] P. A. Schmidt, E. Malb, and R. P. Wrtz, A sensor for dynamic tactile information with applications in human–robot interaction and object exploration, Robotics and Autonomous Systems, 54(12), 2006, 1005–1014.
  29. [29] H. Zhang and E. So, Hybrid resistive tactile sensing, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 32(1), 2002, 57–65.
  30. [30] J. Dargahi, M. Parameswaran, and S. Payandeh, A micromachined piezoelectric tactile sensor for an endoscopic graspertheory, fabrication and experiments, Journal of Microelectromechanical Systems, 9(3), 2000, 329–335.
  31. [31] T. K. Maiti, L. Chen, M. Miura-Mattausch, S. K. Koul, and H. J. Mattausch, Physics based system simulation for robot electro-mechanical control design, Electron Devices Technology and Manufacturing Conference, Toyama, Japan, 2017, 259– 261.
  32. [32] T. K. Maiti, Y. Ochi, D. Navarro, M. Miura-Mattausch, and H. J. Mattausch, Walking robot movement on non-smooth surface controlled by pressure sensor, Advanced Material Letters, 9(2), 2018, 23–127.
  33. [33] S. Dutta, T. K. Maiti, Y. Ochi, M. Miura-Mattausch, S. Bhattacharya, D. Navarro, N. Yorino, and H. Jrgen Mattausch, Self-controlled walking robot with gyro sensor network for stable movement on non-smooth surface, IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots, Brisbane, Australia, 2018, 42–48.
  34. [34] T. K. Maiti, S. Dutta, S. Bhattacharya, Y. Ochi, D. Navarro, M. Miura-Mattausch, and H. J. Mattausch, Modeling of multidimensional system and its application for robot development, International Symposium on Devices, Circuits and Systems, Kolkata, India, 2018, 1–4.
  35. [35] T. K. Maiti, L. Chen, H. Zenitani, H. Miyamoto, M. MiuraMattausch, and H. J. Mattausch, Compact electro-mechanicalfluidic model for actuated fluid flow system, IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2(1), 2017, 124–133.
  36. [36] M. Kalantari, J. Dargahi, J. Kvecses, M. G. Mardasi, and S. Nouri, A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites, IEEE/ASME Transactions on Mechatronics, 17(3), 2012, 572–581.
  37. [37] Force Sensors for Design, Tekscan Inc., USA, Feb. 2017, www.tekscan.com
  38. [38] S. D. Senturia, Microsystems Design (Norwell, MA: Kluwer Academic Publisher, 2001).
  39. [39] A. Nathan and H. Baltes, Microsystem simulation, in Microtransducer CAD, (Vienna: Springer-Verlag Wien 1999), ch. 9, 76.
  40. [40] KHR-3HV Humanoid Robot, Kondo Kagaku Co. Ltd., 2021, http://kondo-robot.com
  41. [41] B. Brogliato and P. Orhant, Contact stability analysis of a one degree-of-freedom robot, Dynamics and Control, 8(1), 1998, 37–53.
  42. [42] T. Sugihara and Y. Fujimoto, Dynamics Analysis: Equations of Motion, in A. Goswami and P. Vadakkepat (eds.) Humanoid Robotics: A Reference, (Springer Netherlands: Springer Nature B V, 2019).
  43. [43] K. Miura, M. Morisawa, F. Kanehiro, S. Kajita, K. Kaneko, and K. Yokoi, Human-like walking with toe supporting for humanoids, IEEE International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, 2011, 4428–4435.
  44. [44] S. Kajita, K. Kaneko, K. Harada, F. Kanehiro, K. Fujiwara, and H. Hirukawa, Biped walking on a low friction floor, IEEE International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, 3546–3552.
  45. [45] S. Bhattacharya, A. Luo, T. K. Maiti, S. Dutta, Y. Ochi, M. Miura-Mattausch, and H. J. Mattausch, Surface-property recognition with force sensors for stable walking of humanoid robot, IEEE Access, 7, 2019, 146443–146456.
  46. [46] H. Hemami and V. C. Jaswa, On the three-link model of the dynamics of standing up and sitting down, IEEE Transactions on Systems, Man, and Cybernetics, 8(2), 115–120.
  47. [47] Y. Fujimoto and S. Kajita, A biped walking robot based on position control, Journal of the Robotics Society of Japan, 30(4), 2012, 344–349.
  48. [48] S. Kajita, Feedback Control of Inverted Pendulums, in A. Goswami and P. Vadakkepat (eds.), Humanoid Robotics: A Reference, (Springer Netherlands: Springer Nature B V, 2019).
  49. [49] J. E. Pratt, C. Ott, and S.-H. Hyon, Introduction to Humanoid Balance, in A. Goswami and P. Vadakkepat (eds.), Humanoid robotics: A reference (Springer Netherlands: Springer Nature B V, 2019).
  50. [50] S. Hyon, J. G. Hale, and G. Cheng, Full-body compliant humanhumanoid interaction: balancing in the presence of unknown external forces, IEEE Transactions on Robotics, 23(5), 2007, 884–898.
  51. [51] S.-H. Lee and A. Goswami, Ground reaction force control at each foot: a momentum-based humanoid balance controller for non-level and non-stationary ground, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 2010, 3157–3162.
  52. [52] J. Pratt, J. Carff, S. Drakunov, and A Goswami, Capture point: a step toward humanoid push recovery, IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, 2006, 200–207.
  53. [53] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 2003, 1620–1626.
  54. [54] Y. Choi, D. Kim, Y. Oh, and B. J. You, Posture/walking control for humanoid robot based on kinematic resolution of CoM Jacobian with embedded motion, IEEE Transactions on Robotics, 23(6), 2007, 1285–1293.

Important Links:

Go Back