ADAPTIVE FUZZY-WAVELET NEURAL NETWORKS-BASED REAL-TIME MODEL GENERATION FOR INCREASING TRACKING PRECISION OF MULTIVARIABLE SERVO ACTUATOR

Sadeq Yaqubi,∗ Mahdi Homaeinezhad,∗∗ and Mohammad R. Homaeinezhad∗

References

  1. [1] M.R. Homaeinezhad and S. Yaqubi, Adaptive fuzzy-wavelet neural network identification core for reinforced control of general arbitrarily switched nonlinear multi input-multi output dynamic systems, Applied Soft Computing, 91, 2020, 106265. https://doi.org/10.1016/j.asoc.2020.106265.
  2. [2] M. Khenfer, B. Daaou, and M. Bouhamida, Two nonlinear observers based sliding mode controller for a multivariable continuous stirred tank reactor, Mechatronic Systems and Control, 48(1), 2020. https://doi.org/10.2316/J.2020.201-0031.
  3. [3] H. Du, X. Yu, M.Z.Q. Chen, and S. Li, Chattering-free discrete-time sliding mode control, Automatica, 68, 2016, 87–91. https://doi.org/10.1016/j.automatica.2016.01.047.
  4. [4] M.R. Homaeinezhad, S. Yaqubi, and M. Abolhasani Dolatabad, Friction-tracker-embedded discrete finite-time sliding mode control algorithm for precise motion control of worm-gear reducers under unknown switched assistive/resistive loading, Journal of Control, Automation and Electrical Systems, March 2020. https://doi.org/10.1007/s40313-020-00583-y.
  5. [5] E. Hairer, G. Wanner, and S.P. Nørsett, Solving Ordinary Differential Equations I: Nonstiff Problems (Berlin: Springer, 1993).

Important Links:

Go Back