EXPERIMENT STUDY OF THE MAGNETIC MEMORY SIGNAL CHARACTERISTICS OF BUTT WELD UNDER FATIGUE LOADS USING GRADIENT INTEGRAL

Hu Ma,∗ Zhenfeng He,∗ Jianting Zhou,∗ Leng Liao,∗∗ Yang Zou,∗ and Yue Chen∗

References

  1. [1] P.K. Liaw, C.Y. Yang, S.S. Palusamy, and W. Ren, Fatigue crack initiation and propagation behavior of pressure vessel steels, Engineering Fracture Mechanics, 57(1), 1997, 85–95.
  2. [2] D.A. Cook and Y.H. Berthelot, Detection of small surfacebreaking fatigue cracks in steel using scattering of Rayleigh waves, NDT & E International, 34(7), 2001, 483–492.
  3. [3] S. Gupta, A. Ray, and E. Keller, Online fatigue damage monitoring by ultrasonic measurements: A symbolic dynamics approach, International Journal of Fatigue, 29(6), 2007, 1100– 1114.
  4. [4] Y. Yan, L.L. Zou, and X.L Zhou, Infrared thermal imaging nondestructive testing of fatigue cracks of steel bridges, Journal of Applied Sciences, 34(1), 2016, 106–114.
  5. [5] F.B. Wang, F. Sun, D.R. Zhu, T. Liu, X. Wang, and F. Wang, A method of metal fatigue damage assessment based on polarization thermal image, Acta Optica Sinica, 40(14), 2020, 118–128.
  6. [6] J. M Sprauel, H. Michaud, Adaptation of the X-Ray diffraction technique to the analysis of residual stress in carbo-nitrided steel layers, Trans Tech Publications, 490-491, 2005, 125-130.
  7. [7] Y. Akiniwa, K. Tanaka, and H. Kimura, Measurement of stress distribution near fatigue crack in ultrafine grained steel by synchrotron radiation, Materials Science Forum, 490–491, 2005, 118–123.
  8. [8] A.A. Doubov, Express method of quality control of a spot resistance welding with usage of metal magnetic memory, Welding in the World, Le Soudage Dans Le Monde, 46(6), 2002, 317–320.
  9. [9] L.H. Dong, B.S. Xu, S.Y. Dong, and D.W. Yin, Metal magnetic memory experimenting for early damage assessment in ferromagnetic materials, Journal of Central South University of Technology, 12(2), 2005,102–106.
  10. [10] K. Yao, Z.D. Wang, B. Deng, and K. Shen, Experimental research on metal magnetic memory method, Experimental Mechanics, 52(3), 2012, 305–314.
  11. [11] R.Q. Zhao, H. Zhang, L. Liao, J.T. Zhou, H.X. Ma, and Z.G. Li, A stress detection method for reinforced concrete structure based on metal magnetic memory. International Journal of Robotics and Automation, 33(6), 2018, 594–600.
  12. [12] M. Roskosz, Metal magnetic memory experimenting of welded joints of ferritic and austenitic steels, NDT & E International, 44(3), 2011, 305–310.
  13. [13] Z.D. Wang, K. Yao, B. Deng, and K.Q. Ding, Quantitative study of metal magnetic memory signal versus local stress concentration, NDT & E International, 43(6), 2010, 513–518.
  14. [14] C. Xing, M.L. Lu, B. Hu, X.J. Cui, Y.H. Deng, D.Z. Yang, and E.N. Yang, Magnetic evaluation of fatigue damage in train axles without artificial excitation, Insight (Northampton), 48(6), 2006, 342–345.
  15. [15] B.S. Xu, L.H. Dong, S.Y. Dong, and N. Xue, Study on selfemission magnetic signal behavior of fatigue crack growth of ferromagnetic materials under loading conditions, Acta Metallurgica Sinica, 3, 2011, 3–8.
  16. [16] Z.B. Hu, J.C. Fan, S.N. Wu, H.Y. Dai, and S.J. Liu, Characteristics of metal magnetic memory experimenting of 35crmo steel during fatigue loading, Metals, 8(2), 2018, 119.
  17. [17] N. Chen, H. Lin, and X.K. Wang, Crack propagation analysis and fatigue life prediction for structural alloy steel based on metal magnetic memory experimenting, Journal of Magnetism and Magnetic Materials, 462(sep.), 2018, 144–152.
  18. [18] D.C. Jiles and D.L. Athernon, Theory of the magnetization process in ferromagnets and its application to the magnetomechannical effect, Journal of Physics D-Applied Physics, 17(6), 2000, 1265–1281.
  19. [19] D.C. Jiles, Theory of the magnetomechanical effect, Journal of Physics D-Applied Physics, 28(2), 1995, 1537–1546.
  20. [20] D.C. Jiles and L. Li, A new approach to modeling the magnetomechanical effect, Journal of Applied Physics, 95(11), 2004, 7058–7060.
  21. [21] Q.Q. Fei, H.X. Wang, M. Xia, L. Guo, and T.H. Zhang, Effect of loading method on fatigue crack growth of ADB610 steel, Development and Application of Materials, 034(003), 2019, 108–112.
  22. [22] X.W. Chen, D.F. Zhang, S.S. Shi, L.J. Wang, D.L. Lv, and T.H. Shi, Effect of loading method on fatigue crack growth of 28CrMo steel, Transactions of Materials and Heat Treatment, 34(011), 2013, 109–113.
  23. [23] British Standards Institution. Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, Bs7910 British Standards, 2007.
  24. [24] Y.Z. Zhou, F. Li, A. Qi, Y.H. Huang, and J.L. Bu, The latest development of fatigue strength analysis technology for steel structure welds, China Railway Science, 30(004), 2009, 69–75.
  25. [25] H. Zhang, J.T. Zhou, R.Q. Zhao, L. Liao, M. Yang, and R.C. Xia, Experimental study on detection of rebar corrosion in concrete based on metal magnetic memory, International Journal of Robotics and Automation, 32(5), 2017, 530–537.

Important Links:

Go Back