A NOVEL PASSIVE COMPLIANCE METHOD FOR HYDRAULIC SERVO ACTUATOR APPLIED ON QUADRUPED ROBOTS

Zisen Hua,∗,∗∗ Xuewen Rong,∗∗∗ Yaru Sun,∗,∗∗ Yibin Li,∗∗∗ Hui Chai,∗∗∗ and Chengjun Wang∗,∗∗

References

  1. [1] M.H. Raibert, Legged Robots that Balance (Cambridge: MIT Press, 1986).
  2. [2] C. Semini, et al., Design of the hydraulically actuated, torquecontrolled quadruped robot HyQ2Max, IEEE/ASME Transactions on Mechatronics, 22(2), 2016, 635–646.
  3. [3] C.J. Liu, Q.J. Chen, and D.W. Wang, Locomotion control of quadruped robots based on workspace trajectory modulations, International Journal of Robotics & Automation, 27(4), 2012, 345-354.
  4. [4] J.A. Galvez, J. Estremera, P.G. De Santos, A new legged-robot configuration for research in force distribution, Mechatronics, 13(8–9), 2003, 907–932. 10
  5. [5] G. Zhang, et al., Active compliance control of the hydraulic actuated leg prototype, Assembly Automation, 37(3), 2017, 356–368.
  6. [6] C. Semini, et al., Design of HyQ–a hydraulically and electrically actuated quadruped robot, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6), 2011, 831–849.
  7. [7] I.W. Hunter, J. M. Hollerbach, and J. Ballantyne, A comparative analysis of actuator technologies for robotics, Robotics Review, 2, 1991, 299–342.
  8. [8] F. Basile, P. Chiacchio, and D. Del Grosso, Implementation of hydraulic servo controllers with only position measure, International Journal of Robotics & Automation, 24(1), 2009, 20.
  9. [9] J.E. Huber, N.A. Fleck, and M.F. Ashby, The selection of mechanical actuators based on performance indices, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453(1965), 1997, 2185–2205.
  10. [10] M. Raibert, et al., Bigdog, the rough-terrain quadruped robot, IFAC Proceedings Volumes, 41(2), 2008, 10822–10825.
  11. [11] C. Semini, HyQ-design and development of a hydraulically actuated quadruped robot, Doctor of Philosophy (Ph. D.), University of Genoa, Italy, 2010.
  12. [12] S.-H. Hyon and G. Cheng, Gravity compensation and fullbody balancing for humanoid robots, 2006 6th IEEE-RAS International Conference on Humanoid Robots. IEEE, 2006, 214–221.
  13. [13] G. Nelson, et al., Petman: A humanoid robot for testing chemical protective clothing, Journal of the Robotics Society of Japan, 30(4), 2012, 372–377.
  14. [14] H.E. Merritt, Hydraulic Control Systems (John Wiley & Sons, Wiley, U.S.A, 1991).
  15. [15] M. Raibert, M. Chepponis, and H.B.J.R. Brown, Running on four legs as though they were one, IEEE Journal on Robotics and Automation, 2(2), 1986, 70–82.
  16. [16] X. Rong, et al., Design and simulation for a hydraulic actuated quadruped robot, Journal of Mechanical Science and Technology, 26(4), 2012, 1171–1177.
  17. [17] M. Buehler, et al., SCOUT: A simple quadruped that walks, climbs, and runs, Proceedings 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146). IEEE, Leuven, Belgium, 1998, 1707–1712.
  18. [18] G.A. Pratt and M.M. Williamson, Series elastic actuators, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Human Robot Interaction and Cooperative Robots. IEEE, Pittsburgh, PA, USA, 1995, 399–406.
  19. [19] H. Zheng, M. Wu, and X. Shen, A pneumatic variable series elastic actuator-powered transtibial prosthesis, International Journal of Robotics and Automation, 35(6), 2020, 408–418.
  20. [20] H. Kimura, Y. Fukuoka, and A.H. Cohen, Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts, The International Journal of Robotics Research, 26(5), 2007, 475–490.
  21. [21] I. Poulakakis, J.A. Smith, and M. Buehler, Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot, The International Journal of Robotics Research, 24(4), 2005, 239–256.
  22. [22] J.G. Nichol, et al., System design of a quadrupedal galloping machine, The International Journal of Robotics Research, 23(10–11), 2004, 1013–1027.
  23. [23] B. Vanderborght, et al., Variable impedance actuators: A review, Robotics and Autonomous Systems, 61(12), 2013, 1601–1614.
  24. [24] S. Wolf, et al., Variable stiffness actuators: Review on design and components, IEEE/ASME Transactions on Mechatronics, 21(5), 2015, 2418–2430.
  25. [25] S.S. Groothuis, et al., The variable stiffness actuator vsaUT-II: Mechanical design, modeling, and identification, IEEE/ASME Transactions on Mechatronics, 19(2), 2013, 589–597.
  26. [26] C. Ding, et al., A lateral impact recovery method for quadruped robot with step height compensation, International Journal of Robotics and Automation, 35(3), 2020, 199–208.
  27. [27] M. Jelali and A. Kroll, Hydraulic Servo-Systems: Modelling, Identification and Control (Springer Science & Business Media, Springer-Verlag, London, 2012).
  28. [28] V. Barasuol, et al., Highly-integrated hydraulic smart actuators and smart manifolds for high-bandwidth force control, Frontiers in Robotics and AI, 5, 2018, 51.
  29. [29] H.E. Merritt, Hydraulic Control Systems (John Wiley & Sons, Springer, Germany, 1991).
  30. [30] T. Boaventura, et al., Model-based hydraulic impedance control for dynamic robots, IEEE Transactions on Robotics, 31(6), 2015, 1324–1336.
  31. [31] T. Boaventura, Hydraulic compliance control of the quadruped robot HyQ, Doctor of Philosophy, Ph.D. Thesis, Advanced Robotics Department, University of Genova, Genova, 2013.
  32. [32] G. Niu, et al., Evaluation and selection of accumulator size in electric-hydraulic hybrid (EH2) powertrain, 2016 IEEE Transportation Electrification Conference and Expo (ITEC), IEEE, Dearborn, MI, USA, 2016, 1–6.
  33. [33] W.S. Levine, The Control Handbook: Control System Fundamentals (CRC Press, U.S.A, 2010).
  34. [34] S.-C. Wu and E.J. Haug, A substructure technique for dynamics of flexible mechanical systems with contact-impact, Journal of Mechanical Design, 112(3), 1990, 390–398.

Important Links:

Go Back