IMPROVING DIELECTRIC DISSIPATION FACTOR OF 420 kV CLASS OIL-SF6 RIP BUSHINGS AT SITE

Harish K. Sharma,∗ Savita Nema,∗ and Rajesh K. Nema∗

References

  1. [1] CIGRE document on Transformer Bushing Reliability, WG A2.43, Ref-755, 2019.
  2. [2] N.S. Jyothi, T.S. Ramu, and M. Mandlik, Temperature distribution in resin impregnated paper insulation for transformer bushings, IEEE Transactions on Dielectrics and Electrical Insulation, 17(3), 2010, 931–938.
  3. [3] N.S. Jyothi and T.S. Ramu, A model for the temperature distribution in resin impregnated paper bushings, 2012 AsiaPacific Power and Energy Engineering Conf., Shanghai, 2012, 1–4.
  4. [4] U. Krüsi, D. Egger, A. Dais, and J. Czyzewski, New paper-free insulation technology for dry high-voltage condenser bushings, 22nd Int. Conf. and Exhibition on Electricity Distribution (CIRED 2013), Stockholm, 2013, 1–4.
  5. [5] H. Tian, P. Liu, S. Zhou, et al., Research on the deterioration process of electrical contact structure inside the ±500 kV converter transformer RIP bushings and its prediction strategy, IET Generation, Transmission & Distribution, 13(12), 2019, 2391–2400
  6. [6] International Standard IEC 60137 Insulated Bushings for Alternating Voltages above 1000 V, 2017.
  7. [7] H. Sharma, S. Nema, and R.K. Nema, Extra/ultra high voltage transformers: Recent practices in India, 2nd IEEE Int. Conf. on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, Kerala, India, 2019, 59–65.
  8. [8] Z. Xu, F. Yi, G. Hu, et al., Study on frequency domain dielectric spectroscopy of epoxy resin impregnated paper bushings under damp conditions, Journal of Engineering, 2019(16), 2019, 1319–1323.
  9. [9] S. Wolny, A. Adamowicz, M. Lepich, Influence of temperature and moisture level in paper-oil insulation on the parameters of the ColeCole model, IEEE Transactions on Power Delivery, 29, 2014, 246250.
  10. [10] M. Chen, X. Liu, P. Xu, and T. Wen, Local inter-foil insulation deterioration diagnosis and simulation of RIP bushing based on FDS method, 2018 Condition Monitoring and Diagnosis, Perth, WA, 2018, 1–5.
  11. [11] A.S. Asem and A.F. Howe, Drying of power-transformer insulation, IEE Proceedings C – Generation Transmission and Distribution, 129(5), 1982, 228–232.
  12. [12] J.A. Almendros-Ibanez, J.C. Burgos, and B. Garcia, Transformer field drying procedures: A theoretical analysis, IEEE Transactions on Power Delivery, 24(4), 2009, 1978–1986.
  13. [13] S. Zhang, Z. Peng, L. Peng, and X. Ning, Experimental study on the electrical and thermal properties of epoxy-crepe paper composites for use in UHV DC bushing condensers, 2013 IEEE Int. Conf. on Solid Dielectrics, Bologna, Italy, 2013.
  14. [14] X. Ning, H. Feng, H. Zhang, P. Liu, Z. Xiang, and Z. Peng, Dielectric properties of multi-layer epoxy resin impregnated crepe paper composites, IEEE Transactions on Dielectrics and Electrical Insulation, 22(1), 2015, 161–168.
  15. [15] S. Zhang, Z. Peng, and P. Liu, Inner insulation structure optimization of UHV RIP oil-SF6 bushing using electro-thermal simulation and advanced equal margin design method, IEEE Transactions on Dielectrics and Electrical Insulation, 21(4), 2014, 1768–1777.
  16. [16] CIGRE document on Ageing of liquid impregnated cellulose for power transformers, WG D1.53, Technical Broucher No. 738, 2018.
  17. [17] Bharat Heavy Electricals Limited Bhopal, Transformers, 2nd edn (New Dehli: McGraw Hill Education Private Limited, 2003), 614.
  18. [18] Instructions for Erection & Operation, SF6Switchgear— Transformer Bushing Type RTKG Series GARIP 362. . . 525 kV Product information, ABB, 2008.
  19. [19] D.F. Garcia, B. Garc´ıa, and J. Burgos, Modeling power transformer field drying processes, The Taylor & Francis Journal of Drying Technology, 29(8), 2011, 896–909. 22

Important Links:

Go Back