DISTURBANCE-OBSERVER-SUPPORTED THREE-CHANNEL STATE CONVERGENCE ARCHITECTURE FOR BILATERAL TELEOPERATION SYSTEMS

Muhammad U. Asad,∗ Umar Farooq,∗ Jason Gu,∗ Rong Liu,∗∗ Ghulam Abbas,∗∗∗ and Valentina E. Balas∗∗∗∗

References

  1. [1] B. Siciliano and O. Khatib, Springer handbook of robotics, 1st ed. (Berlin: Springer, 2008).
  2. [2] R. Anderson and M.W. Spong, Bilateral control of teleoperators with time delay, IEEE Transactions on Automatic Control, 34(5), 1989, 494–501.
  3. [3] P.F. Hokayem and M.W. Spong, Bilateral teleoperation: An historical survey, Automatica, 42(12), 2006, 2035–2057.
  4. [4] G. Niemeyer and J.J.E. Slotine, Stable adaptive teleoperation, IEEE Journal of Oceanic Engineering, 16(1), 1991, 152–162.
  5. [5] N.A. Tanner and G. Niemeyer, Online tuning of wave impedance in telerobotics, Proc. IEEE Conf. on Robotics, Automation and Mechatronics, Singapore, 2004, 7–12.
  6. [6] E.J. Rodr´ıguez-Seda and M.W. Spong, A time varying impedance approach for transparency compensation in bilateral teleoperation, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, St. Louis, MO, USA, 2009, 4609–4615.
  7. [7] L. Hu, Y. Yang, and S. Xu, Force feedback and control for wavevariable teleoperation systems with time delays, International Journal of Robotics and Automation, 29(4), 2014.
  8. [8] N. D’Amore and D.L. Akin, Transparency and tuning of wave-based bilateral teleoperation systems, IEEE Robotics and Automation Letters, 2(1), 2017, 321–328.
  9. [9] S.G. Yoo and K.T. Chong, Adaptive wave variables for bilateral teleoperation using neural networks, Neural Computing and Applications, 25(6), 2014, 1249–1262.
  10. [10] Z. Chen, F. Huang, W. Sun, and W. Song, An improved wavevariable based four-channel control design in bilateral teleoperation system for time delay compensation, IEEE Access, 6, 2018, 12848–12857.
  11. [11] J. Ryu, D. Kwon, and B. Hannaford, Stable teleoperation with time-domain passivity control, IEEE Transactions on Robotics and Automation, 20(2), 2004, 365–373.
  12. [12] Z. Chen, Y. Pan, and J. Gu, Adaptive robust control of bilateral teleoperation systems with unmeasurable environmental force and arbitrary time delays, IET Control Theory and Applications, 8(15), 2014, 1456–1464.
  13. [13] Y. Ye, Y.J. Pan, Y. Gupta, and J. Ware, A power-based time domain passivity control for haptic interfaces, IEEE Transactions on Control Systems Technology, 19(14), 2011, 874–883.
  14. [14] J. Yan and S.E. Salcudean, Teleoperation controller design using H for haptic interfaces, ntal force and arbitrary t IEEE Transactions on Control Systems Technology, 4(3), 1996, 244– 258.
  15. [15] Y. Li, Y. Yin, and D. Zhang, Adaptive task-space synchronization control of bilateral teleoperation systems with uncertain parameters and communication delays, IEEE Access, 6, 2018, 5740–5748.
  16. [16] Z. Chen, F. Huang, W. Chen, et al., RBFNN-based adaptive sliding mode control design for delayed nonlinear multilateral telerobotic system with cooperative manipulation, IEEE Transactions on Industrial Informatics, 16(2), 1999, 1236– 1247.
  17. [17] V.T. Minh and F.M. Hashim, Adaptive teleoperation system with neural network-based multiple model control, Mathematical Problems in Engineering, 2010, 2010, 1–15.
  18. [18] U. Farooq, J. Gu, M. El-Hawary, M.U. Asad, and G. Abbas, Fuzzy model based bilateral control design of nonlinear teleoperation system using method of state convergence, IEEE Access, 4, 2016, 4119–4135.
  19. [19] A. Suzuki and K. Ohnishi, Frequency domain damping design for time-delayed bilateral teleoperation system based on modal space analysis, IEEE Transactions on Industrial Electronics, 60(1), 2013, 177–190.
  20. [20] T. Slama, A. Trevisani, D. Aubry, R. Oboe, and F. Kratz, Experimental analysis of an internet-based bilateral teleoperation system with motion and force scaling using a model predictive controller, IEEE Transactions on Industrial Electronics, 55(9), 2008, 3290–3299.
  21. [21] Y. Yang, C. Hua, and X. Guan, Finite time control design for bilateral teleoperation system with position synchronization error constrained, IEEE Transactions on Cybernetics, 46(3), 2016, 609–619.
  22. [22] Z. Chen, Y.J. Pan, and J. Gu, Integrated adaptive robust control for multilateral teleoperation systems under arbitrary time delays, International Journal of Robust and Nonlinear Control, 26(12), 2016, 2708–2728.
  23. [23] Y. Dong and N. Chopra, Passivity-based bilateral tele-driving system with parametric uncertainty and communication delays, IEEE Control Systems Letters, 3(2), 2019, 350–355.
  24. [24] J.M. Azorin, O. Reinoso, R. Aracil and M. Ferre, Generalized control method by state convergence of teleoperation systems with time delay, Automatica, 40(9), 2004, 1575–1582.
  25. [25] M.U. Asad, U. Farooq, J. Gu, G. Abbas, R. Liu, and V.E. Balas, A composite state convergence scheme for bilateral teleoperation systems, IEEE/CAA Journal of Automatica Sinica, 6(5), 2019, 1–13.

Important Links:

Go Back