Suhail A. Suhail,∗ Mohammad A. Bazaz,∗ and Shoeb Hussain∗


  1. [1] H.O. Wang, K. Tanaka, and M.F. Griffin, An approach to fuzzy control of nonlinear systems: Stability and design issues, IEEE Transactions on Fuzzy Systems, 4, 1996, 14–23.
  2. [2] J.J. Wang, Stabilization and tracking control of X-Z inverted pendulum based on PID controllers, Proceedings of the 34th Chinese Control Conference, Hangzhou, China, 2015, 4204– 4207.
  3. [3] D. Chatterjee, A. Patra, and H.K. Joglekar, Swing-up and stabilization of a cart-pendulum system under restricted cart track length, System & Control Letters, 47(4), 2002, 355–364.
  4. [4] L. Magni, R. Scattolini, and K. Astrom, Global stabilization of the inverted pendulum using model predictive control, Proceedings of the 15th IFAC World Congress, 15, 2002, 590– 595.
  5. [5] C.W. Anderson, Learning to control an inverted pendulum using neural networks, IEEE Control Systems Magazine, 9, 1989, 31–37.
  6. [6] M. Cacciola, F.C. Morabito, D. Polimeni, and M. Versaci, Fuzzy characterization of flawed metallic plates with Eddy current tests, Progress in Electromagnetics Research, 72, 2007, 241–252.
  7. [7] M. Cacciola, F. La Foresta, F.C. Morabito, and M. Versaci, Advanced use of soft computing and Eddy current test to evaluate mechanical integrity of metallic plates, NDT & E International, 40(5), 2007, 357–362.
  8. [8] M. Cacciola, S. Calcagno, G. Megali, F.C. Morabito, D. Pellicano , and M. Versaci, FEA design and misfit minimization for in-depth flaw characterization in metallic plates with Eddy current nondestructive testing, IEEE Transactions on Magnetics, 45(3), 2009, 1506–1509.
  9. [9] E. Yazdi and R. Nagamune, Robust finite-time tracking with switched controllers, Control and Intelligent Systems, 40(3), 2012. doi: 10.2316/Journal.201.2012.3.201-2367
  10. [10] J.Q. Han, From PID to active disturbance rejection control, IEEE Transactions on Industrial Electronics, 56(3), 2009, 1–7.
  11. [11] S. Jiao, D. Liu, and X. Zheng, Attitude control of quadcopter based on self-tuning linear active disturbance rejection, Mechatronic Systems and Control, 48(2), 2020. doi: 10.2316/J.2020.201-0022
  12. [12] H. Jiang, Q. Chang, Y. Wang, and X. Xie, Optimization of the active disturbance rejection control of a four-rotor aircraft, Mechatronic Systems and Control, 48(2), 2020. doi: 10.2316/J.2020.201-0017
  13. [13] R. Parvathy, A. Daniel, and C. Noufal, Analysis of extendedstate-observer and active-disturbance-rejection control in the speed control Of DC motor system, Mechatronic Systems and Control, 47(2), 2019. doi: 10.2316/J.2019.201-2952
  14. [14] Z.Q. Gao, Scaling and bandwidth-parameterization based controller tuning, Proceedings of the 2003 American Control Conference, Denver, Colorado, USA, 2003, 4989–4996.
  15. [15] X. Chen, D. Li, Z. Gao, and C. Wang, Tuning method for second-order active disturbance rejection control, Proceedings of the 30th Chinese Control Conference, Yantai, 2011, 6322– 6327.
  16. [16] S.A. Suhail, M.A. Bazaz, and S. Hussain, Altitude and attitude control of a quadcopter using linear active disturbance rejection control, 2019 International Conference on Computing, Power and Communication Technologies (GUCON), NCR New Delhi, India, 2019, 281–286.
  17. [17] C. Dai, J. Yang, Z. Wang, and S. Li, Universal active disturbance rejection control for non-linear systems with multiple disturbances via a high-order sliding mode observer, IET Control Theory & Applications, 11(8), 2017, 1194–1204.
  18. [18] A. Ghosh, T.R. Krishnan, and B. Subudhi, Robust proportional-integral-derivative compensation of an inverted cartpendulum system: An experimental study, IET Control Theory & Applications, 6(8), 2012, 1145–1152.
  19. [19] J. Yang, J.Y. Su, S.H. Li, et al., High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding mode approach, IEEE Transactions on Industrial Informatics, 10(1), 2014, 604–614.

Important Links:

Go Back