MACHINE LEARNING APPROACH FOR THE CLASSIFICATION OF VIOLENT ATTACK BASED ON FABRIC SENSORS

Princy Randhawa,∗ Vijay C. Shanthagiri,∗∗ and Ajay Kumar∗

References

  1. [1] E. Garcia, R.F. Brena, J.C. Carrasco-Jimenez, and L. Garrido, Long-term activity recognition from wristwatch accelerometer data, Sensors, 14(12), 2014, 22500–22524. doi:10.3390/s141222500.
  2. [2] S.-W. Lee and K. Mase, Activity and location recognition using wearable sensors, IEEE Pervasive Computing, 1, 2002, 24–32.
  3. [3] A. Mazzoldi, D. De Rossi, F. Lorussi, E.P. Scilingo, and R. Paradiso, Smart textiles for wearable motion capture systems, Autex Research Journal, 2, 2002, 199–203.
  4. [4] L. Atallah, B. Lo, R. King, and G. Yang, Sensor positioning for activity recognition using wearable accelerometers, IEEE Transactions on Biomedical Circuits and Systems, 5(4), 2011, 320–329.
  5. [5] F. Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi, L. Oukhellou, and Y. Amirat, Physical human activity recognition using wearable sensors, Sensors, 15(12), 2015, 31314–31338.
  6. [6] L.M. Castano and A.B. Flatau, Smart fabric sensors and e-textile technologies: A review, Smart Materials and Structures, 23(5), 2014, 53001.
  7. [7] Y. Cha, K. Nam, and D. Kim, Patient posture monitoring system based on flexible sensors, Sensors, 17(3), 2017, 584.
  8. [8] M. Cornacchia, K. Ozcan, Y. Zheng, and S. Velipasalar, Using wearable sensors, 17(2), 2017, 386–403.
  9. [9] S.B. Gadhe, G. Chinchansure, A. Kumar, and M. Ojha, Women anti-rape belt, Compusoft, 4(4), 2015, 1632–1636.
  10. [10] M. Jutila, H. Rivas, P. Karhula, and S. Pantsar-Syv¨aniemi, Implementation of a wearable sensor vest for the safety and well-being of children, Procedia Computer Science, 32, 2014, 888–893.
  11. [11] R. Madarshahian and J.M. Caicedo, Human activity recognition using multinomial logistic regression, in H.S. Atamturktur, B. Moaveni, C. Papadimitriou, and T. Schoenherr (eds.), Model validation and uncertainty quantification (Springer International Publishing, 2015), Vol. 3. https://doi.org/10.1007/9783-319-15224-0.
  12. [12] Y. Menguc, Y.-L. Park, H. Pei, D. Vogt, P.M. Aubin, E. Winchell, and C.J. Walsh, Wearable soft sensing suit for human gait measurement, The International Journal of Robotics Research, 33(14), 2014, 1748–1764.
  13. [13] T. Karthick and M. Manikandan, Fog assisted IoT based medical cyber system for cardiovascular diseases affected patients, Concurrency and Computatation Practice and Experience, 31, 2019, e4861. https://doi.org/10.1002/cpe.4861. 218
  14. [14] P. Randhawa, V. Shanthagiri, and A. Kumar, A review on applied machine learning in wearable technology and its applications, International Conference on Intelligent Sustainable Systems (ICISS), 2017, 347–354.
  15. [15] E. Al Safadi, F. Mohammad, D. Iyer, B.J. Smiley, and N.K. Jain, Generalized activity recognition using accelerometer in wearable devices for IoT applications, 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Colorado Springs, CO, 2016, 73–79, doi:10.1109/AVSS.2016.7738020.
  16. [16] P. Randhawa, V. Shanthagiri, and A. Kumar, Design and development of a Smart-Jacket for posture detection and classification using machine learning, International Conference on SmartComputing and Electronics Enterprise, 2018.
  17. [17] J. Wang, et al., Wearable sensor based human posture recognition, IEEE International Conference on Big Data (Big Data), Washington, DC, 2016, 3432–3438, doi: 10.1109/ BigData.2016.7841004.
  18. [18] N.D. Nguyen, D.T. Bui, P.H. Truong, and G.-M. Jeong, Position-based feature selection for body sensors regarding daily living activity recognition, Journal of Sensors, 2018, 9762098. https://doi.org/10.1155/2018/9762098.
  19. [19] C.V. Bouten, K.T. Koekkoek, M. Verduin, R. Kodde, and J.D. Janssen, A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity, IEEE Transactions on Biomedical Engineering, 44, 1997, 136– 147.
  20. [20] L. Baoand S.S. Intille, Activity recognition from userannotated acceleration data, in Pervasive Computing, Springer Berlin/Heidelberg, Berlin, Germany, 2004, 1–17.
  21. [21] B. Wang, Y. Li, H. Lang, and Y. Wang, Hand gesture recognition and motion estimation using the kinect sensor, Mechatronic Systems and Control, 48(1), 2020.
  22. [22] G. Sreenu and M.A. Durai, Intelligent video surveillance: A review through deep learning techniques for crowd analysis, Journal of Big Data, 6, 2019, 48. doi:10.1186/s40537-0190212-5.
  23. [23] S. Pappu, P. Vudatha, A.V. Niharika, T. Karthick, and S. Sankaranarayanan, Intelligent IoT based water quality monitoring system, International Journal of Applied Engineering Research, 12(16), 2017, 5447–5454.
  24. [24] L. Cheng, Y. Guan, K. Zhu, and Y. Li, Recognition of human activities using machine learning methods with wearable sensors, IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, 2017, 1–7, doi:10.1109/CCWC.2017.7868369.
  25. [25] M. Cornacchia, K. Ozcan, Y. Zheng, and S. Velipasalar, A survey on activity detection and classification using wearable sensors, IEEE Sensors Journal, 17(2), 2017, 386–403, doi:10.1109/JSEN.2016.2628346.
  26. [26] X. Kui, W. Liu, K. Guo, J. Xia, and H. Du, Teaching method reform of python language programming course based on minimum knowledge sets, Mechatronic Systems and Control, 46(4), 2018, 181–186.
  27. [27] N. Noury, A. Galay, J. Pasquier, and M. Ballussaud, Preliminary investigation into the use of autonomous fall detectors, in Proc. International Conference of the IEEE Engineering in Medicine and Biology Society, 2008, 2828–2831.
  28. [28] J. Shin, S.J. Kim, D.-H. Kim, C.S. Hwang, K. Do, T. Hyeon, et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders, Nature Nanotechnology, 9(5), 2014, 397–404. https://doi.org/10.1038/nnano.2014.38.

Important Links:

Go Back