CLOSED LOOP NONLINEAR OPTIMAL CONTROL OF A 3PRS PARALLEL ROBOT

Hami Tourajizadeh∗ and Oveas Gholami∗∗

References

  1. [1] Y. Li and Q. Xu, Kinematics and stiffness analysis for a general 3-PRS spatial parallel mechanism, Proc. of 15th CISMIFToMM Symposium on Robot Design, Dynamics and Control, Québec, Canada, 2004, 14–18.
  2. [2] Q. Xu and Y. Li, A 3-PRS parallel manipulator control based on neural network, International Symposium on Neural Networks, Nanjing, China, 2007, 757–766.
  3. [3] M.-S. Tsai and W.-H. Yuan, Dynamic modeling and decentralized control of a 3 PRS parallel mechanism based on constrained robotic analysis, Journal of Intelligent & Robotic Systems, 63(3–4), 2011, 525–545.
  4. [4] M. Vallés, M. D´ıaz-Rodr´ıguez, ´A. Valera, V. Mata, and ´A. Page, Mechatronic development and dynamic control of a 3-DOF parallel manipulator, Mechanics based Design of Structures and Machines, 40(4), 2012, 434–452.
  5. [5] E.A. Baran, T.E. Kurt, and A. Sabanovic, Lightweight design and encoderless control of a miniature direct drive linear delta robot, Electrical and Electronics Engineering (ELECO), 2013 8th International Conf. on, Bursa, Turkey, 2013, 502–506.
  6. [6] M. Diaz-Rodriguez, A. Valera, V. Mata, and M. Valles, Modelbased control of a 3-DOF parallel robot based on identified relevant parameters, IEEE/ASME Transactions on Mechatronics, 18(6), 2013, 1737–1744.
  7. [7] A.Y. Le, J.K. Mills, and B. Benhabib, Dynamic modeling and control design for a parallel-mechanism-based meso-milling machine tool, Robotica, 32(4), 2014, 515–532.
  8. [8] T. Chettibi, H. Lehtihet, M. Haddad, and S. Hanchi, Minimum cost trajectory planning for industrial robots, European Journal of Mechanics. A, Solids, 23(4), 2004, 703–715.
  9. [9] S. Kumar, K. Rani, and V. Banga, Robotic arm movement optimization using soft computing, International Journal of Robotics and Automation (IJRA), 6(1), 2017, 1–14.
  10. [10] Y. Liu, M. Cong, H. Dong, D. Liu, and Y. Du, Time-optimal motion planning for robot manipulators based on elitist genetic algorithm, International Journal of Robotics & Automation, 32(4), 2017, 396–405.
  11. [11] M.M. Fateh and S. Khorashadizadeh, Optimal robust voltage control of electrically driven robot manipulators, Nonlinear Dynamics, 70(2), 2012, 1445–1458.
  12. [12] S.M.H. Zadeh, S. Khorashadizadeh, M.M. Fateh, and M. Hadadzarif, Optimal sliding mode control of a robot manipulator under uncertainty using PSO, Nonlinear Dynamics, 84(4), 2016, 2227–2239.
  13. [13] M. Miswanto, I. Pranoto, H.M. Mhammad, and D. Mahayana, The control design of ship formation with the presence of a leader, IAES International Journal of Robotics and Automation, 4(1), 2015, 53.
  14. [14] A. Gasparetto and V. Zanotto, Optimal trajectory planning for industrial robots, Advances in Engineering Software, 41(4), 2010, 548–556.
  15. [15] R. Callies and P. Rentrop, Optimal control of rigid-link manipulators by indirect methods, GAMM-Mitteilungen, 31(1), 2008, 27–58.
  16. [16] J.E. Bobrow, S. Dubowsky, and J. Gibson, Time-optimal control of robotic manipulators along specified paths, The International Journal of Robotics Research, 4(3), 1985, 3–17.
  17. [17] L. Feifei and L. Fei, Time-jerk optimal planning of industrial robot trajectories, International Journal of Robotics and Automation, 31(1), 2016, 1–7.
  18. [18] W.-H. Chen, D.J. Ballance, and P.J. Gawthrop, Optimal control of nonlinear systems: A predictive control approach, Automatica, 39(4), 2003, 633–641.
  19. [19] M. Korayem, A. Zehfroosh, H. Tourajizadeh, and S. Manteghi, Optimal motion planning of non-linear dynamic systems in the presence of obstacles and moving boundaries using SDRE: Application on cable-suspended robot, Nonlinear Dynamics, 76(2), 2014, 1423–1441.
  20. [20] H. Jamshidifar, B. Fidan, G. Gungor, and A. Khajepour, Adaptive vibration control of a flexible cable driven parallel robot, IFAC-PapersOnLine, 48(3), 2015, 1302–1307.
  21. [21] M. Rushton and A. Khajepour. Optimal actuator placement for vibration control of a planar cable-driven robotic manipulator. 2016 American Control Conf. (ACC), Boston, MA, USA, 2016, 3020–3025.
  22. [22] A. Behboodi and S. Salehi. SDRE controller for motion design of cable-suspended robot with uncertainties and moving obstacles, IOP Conf. Series: Materials Science and Engineering, Tehran, Iran, 2017, 012031.
  23. [23] H. Tourajizadeh and O. Gholami, Optimal control and path planning of a 3PRS robot using indirect variation algorithm, Robotica, 38(5), 2020, 903–924. 131
  24. [24] F. Paccot, N. Andreff, and P. Martinet, A review on the dynamic control of parallel kinematic machines: Theory and experiments, The International Journal of Robotics Research, 28(3), 2009, 395–416.
  25. [25] M.W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control (Jon Wiley & Sons, Inc., 2005), Singapore, ISBN-100-471-649.

Important Links:

Go Back