APPLICATION OF ROBUST H ∞ STATE FEEDBACK CONTROLLER IN SATELLITE FORMATION FLYING

Mohammad R. Izadi,∗ Ali Shakib,∗∗ and Saman Saki∗∗∗

References

  1. [1] G.P. Liu and S. Zhang, A survey on formation control of small satellites, Proceedings of the IEEE, 106 (3), 2018, 440–457. 117
  2. [2] S. Bandyopadhyay, G.P. Subramanian, R. Foust, D. Morgan, S.J. Chung, and F. Hadaegh, A review of impending small satellite formation flying missions, 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, 2015, 1623.
  3. [3] T. Wahl and K. Howell, Autonomous guidance algorithms for formation reconfiguration maneuvers, AAS/AIAA Astrodynamics Specialist Conference, Stevenson, WA, 2017.
  4. [4] H. Sun, H. Zhao, K. Huang, S. Zhen, and Y.-H. Chen, Adaptive robust constraint-following control for satellite formation flying with system uncertainty, Journal of Guidance, Control, and Dynamics, 40(6), 2017, 1492–1502.
  5. [5] D. Wang, B. Wu, and E.K. Poh, Satellite formation flying, Intelligent systems, control and automation: science and engineering, Vol. 87, (Singapore: Springer, 2017).
  6. [6] W.H. Clohessy and R.S. Wiltshire, Terminal guidance system for satellite rendezvous, Journal of the Aerospace Sciences, 27(9), 1960, 653–658.
  7. [7] G. Inalhan, M. Tillerson, and J.P. How, Relative dynamics and control of spacecraft formations in eccentric orbits, Journal of Guidance, Control, and Dynamics, 25(1), 2002, 48–59.
  8. [8] W.J. Larson and J.R. Wertz, Space mission analysis and design, No. DOE/NE/32145-T1 (Torrance, CA: Microcosm, Inc., 1992).
  9. [9] T. Reid and A.K. Misra, Formation flight of satellites in the presence of atmospheric drag, Journal of Aerospace Engineering, 3(1), 2011, 64.
  10. [10] L. Cao and A.K. Misra., Linearized J2 and atmospheric drag model for satellite relative motion with small eccentricity, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(14), 2015, 2718–2736.
  11. [11] Y. Xu, N. Fitz-Coy, R. Lind, and A. Tatsch, μ Control for satellites formation flying, Journal of Aerospace Engineering, 20(1), 2007, 10–21.
  12. [12] P. Gurfil, M. Idan, and N.J. Kasdin, Adaptive neural control of deep-space formation flying, Journal of Guidance, Control, and Dynamics, 26(3), 2003, 491–501.
  13. [13] T. Guo, H. Wang, Y. Liu, M. Li, and Y. Wang, Vision-based mobile robot leader–follower control using model predictive control, International Journal of Robotics and Automation, 34(5), 2019, 458–470.
  14. [14] W. Zhang, Z. Liang, X. Sun, Y. Teng, X. Song, and Z. Yan, Path following control for an under-actuated UUV based on adaptive sliding mode control, International Journal of Robotics and Automation, 32(5), 2017, 458–470.
  15. [15] C. Wei, S.-Y. Park, and C. Park, Optimal H∞ robust output feedback control for satellite formation in arbitrary elliptical reference orbits, Advances in Space Research, 54(6), 2014, 969–989.
  16. [16] G. Franzini and M. Innocenti, Nonlinear H-infinity control of relative motion in space via the state-dependent Riccati equations, 2015 54th IEEE Conference on Decision and Control (CDC), IEEE, 2015, 3409–3414.
  17. [17] H. Gao, X. Yang, and P. Shi, Multi-objective robust H infinity control of spacecraft rendezvous, IEEE Transactions on Control Systems Technology, 17(4), 2009, 794–802.
  18. [18] S.-N. Wu, W.-Y. Zhou, S.-J. Tan, and G.-Q. Wu, Robust control for spacecraft rendezvous with a noncooperative target, The Scientific World Journal, 2013, 2013, 579703–579703.
  19. [19] K. Zhang and G.-R. Duan, Robust H∞ dynamic output feedback control for spacecraft rendezvous with poles and input constraint, International Journal of Systems Science, 48(5), 2017, 1022–1034.
  20. [20] Y.-R. Hu and A. Ng, Robust control of spacecraft formation flying, Journal of Aerospace Engineering, 20(4), 2007, 209–214.
  21. [21] T. Hu, A.R. Teel, and L. Zaccarian, Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance, Automatica, 44(2), 2008, 512– 519.
  22. [22] A.-M. Zou and K.D. Kumar, Adaptive output feedback control of spacecraft formation flying using Chebyshev neural networks, Journal of Aerospace Engineering, 24(3), 2011, 361–372.
  23. [23] Y.-H. Lim and H.-S. Ahn, Relative position keeping in satellite formation flying with input saturation, Journal of the Franklin Institute, 351(2), 2014, 1112–1129.
  24. [24] Y.-H. Lim, H.-S. Ahn, and D.-W. Chung, Satellite formation flying with input saturation: An LMI approach, 2011 IEEE International Symposium on Intelligent Control, IEEE, 2011, 810–815.
  25. [25] S.S. Vaddi, S.R. Vadali, and K.T. Alfriend, Formation flying: Accommodating nonlinearity and eccentricity perturbations, Journal of Guidance, Control, and Dynamics, 26(2), 2003, 214–223.
  26. [26] J.L. Junkins and H. Schaub, Analytical mechanics of space systems, American Institute of Aeronautics and Astronautics, Reston, VA, 2009.
  27. [27] M.J. Sidi, Spacecraft dynamics and control: A practical engineering approach, Vol. 7 (Cambridge, UK: Cambridge University Press, 1997).
  28. [28] R. Sherrill, Dynamics and control of satellite relative motion in elliptic orbits using Lyapunov–Floquet theory, Ph.D. Dissertation, 2013.
  29. [29] M.C. De Oliveira, Fundamentals of linear control (Cambridge, UK: Cambridge University Press, 2017).
  30. [30] E. Fridman, Introduction to time-delay systems: Analysis and control (Switzerland: Springer, 2014).

Important Links:

Go Back