Fang Li,∗,∗∗ Anxiang Lu,∗∗ Jihua Wang,∗∗ and Tianyan You∗
[1] Z. Li, Z. Ma, T.J. van der Kuijp, Z. Yuan Z, and L. Huang,A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment, Science of the TotalEnvironment, 468–469, 2014, 843–853. [2] S. Khalid, M. Shahid, N.K. Niazi, B. Murtaza, I. Bibi, and C.Dumat, A comparison of technologies for remediation of heavymetal contaminated soils, Journal of Geochemical Exploration,182, 2017, 247–268. [3] H. Chen, Y. Teng, S. Lu, Y. Wang, and J. Wang, Contaminationfeatures and health risk of soil heavy metals in China, Scienceof the Total Environment, 512–513, 2015, 143–153. [4] Q. Duan, J. Lee, Y. Liu, H. Chen, and H. Hu, Distributionof heavy metal pollution in surface soil samples in China: Agraphical review, Bulletin of environmental contamination andtoxicology, 97(3), 2016, 303–309. [5] K.S. Balkhair and M.A. Ashraf, Field accumulation risks ofheavy metals in soil and vegetable crop irrigated with sewagewater in western region of Saudi Arabia, Saudi Journal ofBiological Sciences, 23(1), 2016, S32–S44. [6] T. Radu and D. Diamond, Comparison of soil pollution concen-trations determined using AAS and portable XRF techniques,Journal of Hazardous Materials, 171(1–3), 2009, 1168–1171. [7] B. Song, G. Zeng, J. Gong, J. Liang, P. Xu, Z. Liu, et al., Eval-uation methods for assessing effectiveness of in situ remediationof soil and sediment contaminated with organic pollutants andheavy metals, Environment International, 105, 2017, 43–55. [8] H. Rowe, N. Hughes, and K. Robinson, The quantification andapplication of handheld energy-dispersive x-ray fluorescence(ED-XRF) in mudrock chemostratigraphy and geochemistry,Chemical Geology, 324–325, 2012, 122–131. [9] A. Turner, H. Poon, A. Taylor, and M.T. Brown, In situ de-termination of trace elements in Fucus spp. by field-portable-XRF, Science of the Total Environment, 593–594, 2017,227–235. [10] E.L. Shuttleworth, M.G. Evans, S.M. Hutchinson, and J.J.Rothwell, Assessment of lead contamination in peatlands usingfield portable XRF, Water, Air, & Soil Pollution, 225(2), 2014,1844–1856. [11] N.G. Paltridge, L.J. Palmer, P.J. Milham, G.E. Guild,and J.C.R. Stangoulis, Energy-dispersive X-ray fluorescenceanalysis of zinc and iron concentration in rice and pearl milletgrain, Plant and Soil, 361(1–2), 2012, 251–260. [12] W. Hu, B. Huang, D.C. Weindorf, and Y. Chen, Metalsanalysis of agricultural soils via portable X-ray fluorescencespectrometry, Bulletin of Environmental Contamination andToxicology, 92(4), 2014, 420–426. [13] A.G. Caporale, P. Adamo, F. Capozzi, G. Langella, F. Terribile,and S. Vingiani, Monitoring metal pollution in soils usingportable-XRF and conventional laboratory-based techniques:Evaluation of the performance and limitations according tometal properties and sources, Science of the Total Environment,643, 2018, 516–526. [14] A. Chandrasekaran, R. Ravisankar, N. Harikrishnan, K.K.Satapathy, M.V. Prasad, and K.V. Kanagasabapathy, Multi-variate statistical analysis of heavy metal concentration in soilsof Yelagiri Hills, Tamilnadu, India – spectroscopical approach,5Spectrochimica Acta Part A: Molecular and Biomolecular Spec-troscopy, 137, 2015, 589–600. [15] A. Turner and A. Taylor, On site determination of trace metalsin estuarine sediments by field-portable-XRF, Talanta, 190,2018, 498–506. [16] S. Chakraborty, T. Man, L. Paulette, S. Deb, B. Li, D.C.Weindorf, et al., Rapid assessment of smelter/mining soilcontamination via portable X-ray fluorescence spectrometryand indicator kriging, Geoderma, 306, 2017, 108–119. [17] S. Zhou, Z. Yuan, Q. Cheng, Z. Zhang, and J. Yang, Rapidin situ determination of heavy metal concentrations in pol-luted water via portable XRF: Using Cu and Pb as example,Environmental Pollution, 243(Pt B), 2018, 1325–1333. [18] B. Lemi`ere, A review of pXRF (field portable X-ray fluo-rescence) applications for applied geochemistry, Journal ofGeochemical Exploration, 188, 2018, 350–363. [19] M. Qu, Y. Wang, B. Huang, and Y. Zhao, Spatial uncertaintyassessment of the environmental risk of soil copper usingauxiliary portable X-ray fluorescence spectrometry data andsoil pH, Environmental Pollution, 240, 2018, 184–190. [20] E.O. Kazimoto, C. Messo, F. Magidanga, and E. Bundala,The use of portable X-ray spectrometer in monitoring an-thropogenic toxic metals pollution in soils and sediments ofurban environment of Dar es Salaam Tanzania, Journal ofGeochemical Exploration, 186, 2018, 100–113. [21] V.A. Sol´e, E. Papillon, M. Cotte, P. Walter, and J. Susini,A multiplatform code for the analysis of energy-dispersiveX-ray fluorescence spectra, Spectrochimica Acta Part B: AtomicSpectroscopy, 62(1), 2007, 63–68. [22] M.U.A. Bromba and H. Ziegler, Application hints for Savitzky–Golay digital smoothing filters, Analytical Chemistry, 53(11),1981, 1583–1586. [23] R.W. Schafer, What is a Savitzky–Golay filter?, IEEE SignalProcessing Magazine, 28(4), 2011, 111–117. [24] D. Acharya, A. Rani, S. Agarwal, and V. Singh, Applicationof adaptive Savitzky–Golay filter for EEG signal processing,Perspectives in Science, 8, 2016, 677–679. [25] Y. Liu, B. Dang, Y. Li, H. Lin, and H. Ma, Applications ofSavitzky–Golay filter for seismic random noise reduction, ActaGeophysica, 64(1), 2016, 101–124. [26] G. Viv´o-Truyols and P.J. Schoenmakers, Automatic selectionof optimal Savitzky–Golay smoothing, Analytical Chemistry,78(13), 2006, 4598–4608. [27] D. Gupta and S. Choubey, Discrete wavelet transform for imageprocessing, International Journal of Emerging Technology andAdvanced Engineering, 4(3), 2015, 598–602. [28] C. Ma, J. Li, and D. Wang, Optimal evaluation index systemand benefit evaluation model for agricultural informatizationin Beijing, International Journal of Robotics and Automation,33(1), 2018, 89–96. [29] A. Bhattacharyya, M. Sharma, R.B. Pachori, P. Sircar, andU.R. Acharya, A novel approach for automated detection offocal EEG signals using empirical wavelet transform, NeuralComputing and Applications, 29(8), 2016, 47–57. [30] D. De Yong, S. Bhowmik, and F. Magnago, An effective powerquality classifier using wavelet transform and support vectormachines, Expert Systems with Applications, 42(15–16), 2015,6075–6081. [31] Z. Lai, X. Qu, Y. Liu, D. Guo, J. Ye, Z. Zhan, et al., Imagereconstruction of compressed sensing MRI using graph-basedredundant wavelet transform, Medical Image Analysis, 27,2016, 93–104. [32] A. Bhattacharyya, R. Pachori, A. Upadhyay, and U. Acharya,Tunable-Q wavelet transform based multiscale entropy measurefor automated classification of epileptic EEG signals, AppliedSciences, 7(4), 2017, 385–402. [33] M. Hemmat Esfe, M.R. Hassani Ahangar, M. Rejvani, D.Toghraie, and M.H. Hajmohammad, Designing an artificial neu-ral network to predict dynamic viscosity of aqueous nanofluid ofTiO2 using experimental data, International Communicationsin Heat and Mass Transfer, 75, 2016, 192–196. [34] S. Shi, D. Zhang, P. Feng, and L. Han, The enhancementarithmetic of BP neural network based on target optimizing,2018 International Conference on Computer Modeling, Simu-lation and Algorithm (CMSA 2018), (Beijing, China: AtlantisPress, 2018), 151, 2018, 137–141. [35] Q.G. Wen, K.F. Sun, and H. Yen, A method of temperatureprediction and velocity control based on BP artificial neuralnetwork, 2016 International Conference on Information Systemand Artificial Intelligence (ISAI) IEEE, Hong Kong, China,2016, 327–331. [36] G.-Z. Quan, Z.-H. Zhang, J. Pan, and Y.-F. Xia, Modelling thehot flow behaviors of AZ80 alloy by BP-ANN and the appli-cations in accuracy improvement of computations, MaterialsResearch, 18(6), 2015, 1331–1345. [37] C. Yang, Z. Wang, L. Zheng, and D. Mao, Predicting equivalentstatic density of fuzzy ball drilling fluid by BP artificial neutralnetwork, Advances in Materials Science and Engineering, 2015,2015, 1–6. [38] S. Mammadli, Financial time series prediction using artificialneural network based on Levenberg–Marquardt algorithm,Procedia Computer Science, 120, 2017, 602–607. [39] M.G. Shirangi and A.A. Emerick, An improved TSVD-basedLevenberg–Marquardt algorithm for history matching and com-parison with Gauss–Newton, Journal of Petroleum Science andEngineering, 143, 2016, 258–271. [40] A. Gholami, F. Honarvar, and H.A. Moghaddam, Modelingthe ultrasonic testing echoes by a combination of particleswarm optimization and Levenberg–Marquardt algorithms,Measurement Science and Technology, 28(6), 2017, 065001. [41] ¨O. C¸elik, A. Teke, and H.B. Yıldırım, The optimized artificialneural network model with Levenberg–Marquardt algorithmfor global solar radiation estimation in Eastern MediterraneanRegion of Turkey, Journal of Cleaner Production, 116, 2016,1–12. [42] J. Li, W.X. Zheng, J. Gu, and L. Hua, Parameter estima-tion algorithms for Hammerstein output error systems usingLevenberg–Marquardt optimization method with varying in-terval measurements, Journal of the Franklin Institute, 354(1),2017, 316–331. [43] M. Kayri, Predictive abilities of Bayesian regularization andLevenberg–Marquardt algorithms in artificial neural networks:A comparative empirical study on social data, Mathematicaland Computational Applications, 21(2), 2016, 20–30.
Important Links:
Go Back