FRAMEWORK OF HYBRID RENEWABLE ENERGY WITH CONVENTIONAL POWER GENERATION SCHEDULING USING NOVEL METAHEURISTIC OPTIMIZATION ALGORITHM

Kingsuk Majumdar, Provas K. Roy, and Subrata Banerjee

References

  1. [1] A.R. Bergen, Power systems analysis (Pearson Education,India, 2009).
  2. [2] G.C. Ejebe, J. Tong, J. Waight, J. Frame, X. Wang, andW. Tinney, Available transfer capability calculations, IEEETransactions on Power systems, 13(4), 1998, 1521–1527.
  3. [3] H.-D. Chiang and H. Li, On-line ATC evaluation for large-scalepower systems: Framework and tool (Springer, Boston, MA,2005).
  4. [4] L. Xie, Y. Chen, and H. Liao, Distributed online monitoringof quasi-static voltage collapse in multi-area power systems,IEEE Transactions on Power Systems 27(4), 2012, 2271–2279.
  5. [5] Q. Morante, N. Ranaldo, A. Vaccaro, and E. Zimeo, Pervasivegrid for large-scale power systems contingency analysis, IEEETransactions on Industrial Informatics, 2(3), 2006, 165–175.
  6. [6] A.K. Barisal, N.C. Sahu, R.C. Prusty, and P.K. Hota, Shorttermhydrothermal scheduling using gravitational search algorithm,2012 2nd International Conf. on Power, Control andEmbedded Systems, Allahabad, India, 2012, 1–6.
  7. [7] G.L. Decker and A.D. Brooks, Valve point loading of turbines,Transactions of the American Institute of Electrical Engineers.Part III: Power Apparatus and Systems, 77(3), 1958, 481–484.
  8. [8] M.I. Alomoush, Application of the stochastic fractal searchalgorithm and compromise programming to combined heat andpower economic–emission dispatch, Engineering Optimization,2019, 1–19.
  9. [9] M. Saeedi, M. Moradi, M. Hosseini, A. Emamifar, andN. Ghadimi, Robust optimization based optimal chiller loadingunder cooling demand uncertainty, Applied Thermal Engineering,148, 2019, 1081–1091.
  10. [10] N. Kumar, I. Hussain, B. Singh, and B.K. Panigrahi, Selfadaptiveincremental conductance algorithm for swift andripple-free maximum power harvesting from PV array, IEEETransactions on Industrial Informatics, 14(5), 2017, 2031–2041.
  11. [11] N. Kumar, I. Hussain, B. Singh, and B.K. Panigrahi, Mpptin dynamic condition of partially shaded PV system by usingWODE technique, IEEE Transactions on Sustainable Energy,8(3), 2017, 1204–1214.
  12. [12] O. Abedinia, M. Zareinejad, M.H. Doranehgard, G. Fathi,and N. Ghadimi, Optimal offering and bidding strategies ofrenewable energy based large consumer using a novel hybridrobust-stochastic approach, Journal of Cleaner Production,215, 2019, 878–889.
  13. [13] N. Ghadimi, A. Akbarimajd, H. Shayeghi, and O. Abedinia,Two stage forecast engine with feature selection techniqueand improved meta-heuristic algorithm for electricity loadforecasting, Energy, 161, 2018, 130–142.
  14. [14] S. Mirjalili, S.M. Mirjalili, and A. Lewis, Grey wolf optimizer,Advances in Engineering Software, 69, 2014, 46–61.
  15. [15] K. Majumdar, P. Das, P.K. Roy, and S. Banerjee, Solving OPFproblems using biogeography based and grey wolf optimizationtechniques, International Journal of Energy Optimization andEngineering (IJEOE), 6(3), 2017, 55–77.
  16. [16] K. Zervoudakis and S. Tsafarakis, A mayfly optimizationalgorithm, Computers & Industrial Engineering, 106559(145),2020.
  17. [17] R. Eberhart and J. Kennedy, Particle swarm optimization,Proceedings of the IEEE International Conference on NeuralNetworks, vol. 4. Citeseer, 1995, 1942–1948.
  18. [18] R.B. Goldberg, S.J. Barker, and L. Perez-Grau, Regulation ofgene expression during plant embryogenesis, Cell, 56(2), 1989,149–160.
  19. [19] M. Cornick, B. Hunt, E. Ott, H. Kurtuldu, and M.F. Schatz,State and parameter estimation of spatiotemporally chaoticsystems illustrated by an application to Rayleigh–B´enard convection,Chaos: An Interdisciplinary Journal of NonlinearScience, 19(1), 2009, 013108.
  20. [20] S.A. Gaganpreet Kaur, Chaotic whale optimization algorithm,Journal of Computational Design and Engineering, 5, 2018,275–284.

Important Links:

Go Back