Zhiwei Yu, Jielian Tao, Jianyu Xiong, and Simon X. Yang


  1. [1] D. Scaradozzi, G. Palmieri, D. Costa, and A. Pinelli, BCFswimming locomotion for autonomous underwater robots: Areview and a novel solution to improve control and efficiency,Ocean Engineering, 3, 2017, 437–457.
  2. [2] R.K. Katzschmann, A.D. Marchese, and D. Rus, Hydraulicautonomous soft robotic fish for 3D swimming, in M. AniHsieh, Oussama Khatib, Vijay Kumar (eds.), Experimentalrobotics (Cham: Springer, 2016), 405–420.
  3. [3] F. Bonnet, L. Cazenille, A. S´eguret, et al., Design of a modularrobotic system that mimics small fish locomotion and bodymovements for ethological studies, International Journal ofAdvanced Robotic Systems, 14(3), 2017, 1–12.
  4. [4] F. Bonnet, A. Gribovskiy, J. Halloy, and F. Mondana, Closed-loop interactions between a shoal of zebrafish and a group ofrobotic fish in a circular corridor, Swarm Intelligence, 12(3),2018, 227–244.
  5. [5] W. Stoll, Aquaray: Water-hydraulic manta ray with flapping-wing drive, 2009. [Online]. Available:
  6. [6] A.S. Brown, Fair game, Mechanical Engineering, 128(6), 2006,35–37.
  7. [7] W. Wang and G. Xie, CPG-based locomotion controller designfor a boxfish-like robot, International Journal of AdvancedRobotic Systems, 11(6), 2014.
  8. [8] J. Yu, C. Wang, and G. Xie, Coordination of multiple roboticfish with applications to underwater robot competition, IEEETransactions on Industrial Electronics, 63(2), 2016, 1280–1288.
  9. [9] T. Li, G. Li, Y. Liang, et al., Fast-moving soft electronic fish,Science Advances, 3(4), 2017, 1–7.
  10. [10] M. Sfakiotakis, D.M. Lane, and J.B.C. Davies, Review of fishswimming modes for aquatic locomotion, IEEE Journal ofOceanic Engineering, 24(2), 1999, 237–252.
  11. [11] H.B. Yu and X.A. Li, Fast path planning based on grid modelof robot, Microelectronics & Computer, 22(6), 2005, 98–100.
  12. [12] S. Liu and D. Sun, Minimizing energy consumption of wheeledmobile robots via optimal motion planning, IEEE/ASMETransactions on Mechatronics, 19(2), 2013, 401–411.
  13. [13] K. Daniel, A. Nash, S. Koenig, and A. Felner, Theta: Any-angle path planning on grids, Journal of Artificial IntelligenceResearch, 39, 2010, 533–579.
  14. [14] J.J. Kuffner and S.M. LaValle, RRT-connect: An efficient ap-proach to single-query path planning, Proceedings 2000 ICRA.Millennium Conference. IEEE International Conference onRobotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, 2000.
  15. [15] Z. Yu, J. Yan, J. Zhao, Z. Chen, and Y. Zhu, Mobile robot pathplanning based on improved artificial potential field method,Journal of Harbin Institute of Technology, 43(1), 2011, 50–55.
  16. [16] R. Bohlin and L.E. Kavraki, Path planning using lazy PRM,Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-national Conference on Robotics and Automation. SymposiaProceedings (Cat. No. 00CH37065), San Francisco, CA, 2012.
  17. [17] T. Oral and F. Polat, MOD lite: An incremental pathplanning algorithm taking care of multiple objectives, IEEETransactions on Cybernetics, 46(1), 2016, 245–257.
  18. [18] L. Li, X. Wang, D. Xu, and M. Tan, An accurate pathplanning algorithm based on triangular meshes in robotic fibreplacement, International Journal of Robotics and Automation,32(1), 2017, 22–32.
  19. [19] J. Ni, K. Wang, Q. Cao, Z. Khanet, and X. Fan, A memeticalgorithm with variable length chromosome for robot pathplanning under dynamic environments, International Journalof Robotics and Automation, 32(4), 2017, 414–424.
  20. [20] C. Liu, Z. Gao, and W. Zhao, A new path planning methodbased on firefly algorithm, 2012 5th International Joint Con-ference on CSO, Harbin, China, 2012, 775–778.
  21. [21] X. Yi, A. Zhu, S.X. Yang, and C. Luo, A bio-inspired ap-proach to task assignment of swarm robots in 3-D dynamicenvironments, IEEE Transactions on Cybernetics, 47(4), 2016,974–983.
  22. [22] L. Deng, X. Ma, J. Gu, Y. Li, and Y. Wang, Artificialimmune network-based multi-robot formation path planningwith obstacle avoidance, International Journal of Robotics andAutomation, 31(3), 2016, 233–242.
  23. [23] C. Lin, H. Wang, J. Yuan, and M. Fu, An online path planningmethod based on hybrid quantum ant colony optimizationfor AUV, International Journal of Robotics and Automation,33(4), 2018, 435–444.
  24. [24] X. You, L. Sheng, and Z. Chen, An improved ant colonysystem algorithm for robot path planning and performanceanalysis, International Journal of Robotics and Automation,33(5), 2018, 527–533.
  25. [25] S.X. Yang and C. Luo, A neural network approach to completecoverage path planning, IEEE Transactions on Systems, Man,and Cybernetics, Part B (Cybernetics), 34(1), 2004, 718–725.
  26. [26] A.R. Willms and S.X. Yang, An efficient dynamic system forreal-time robot-path planning, IEEE Transactions on Systems,Man, and Cybernetics, Part B (Cybernetics), 36(4), 2006,755–766.
  27. [27] Z. Chu, D. Zhu, and S.X. Yang, Observer-based adaptive neuralnetwork trajectory tracking control for remotely operatedvehicle, IEEE Transactions on Neural Networks and LearningSystems, 28(7), 2017, 1633–1645.
  28. [28] S.X. Yang and M.H. Meng, Real-time collision-free motionplanning of a mobile robot using a neural dynamics-basedapproach, IEEE Transactions on Neural Networks, 14(6), 2003,1541–1552.
  29. [29] A.L. Hodgkin and A.F. Huxley, A quantitative descriptionof membrane current and its application to conduction andexcitation in nerve, The Journal of Physiology, 117(4), 1952,500–544.
  30. [30] S. Grossberg, Nonlinear neural networks: Principles, mecha-nisms, and architecture, Neural Networks, 1, 1988, 17–61.

Important Links:

Go Back