AN EFFICIENT NAVIGATION SYSTEM FOR AUTONOMOUS MOBILE ROBOTS IN DYNAMIC SOCIAL ENVIRONMENTS

Lan A. Nguyen, Trung D. Ngo, Trung D. Pham, and Xuan T. Truong

References

  1. [1] G. Ferrer and A. Sanfeliu, Proactive kinodynamic planning using the extended social force model and human motion prediction in urban environments, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2014), Chicago, IL, USA, September, 2014, 1730–1735.
  2. [2] T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, and N. Hagita, An affective guide robot in a shopping mall, Proc. 4th ACM/IEEE Int. Conf. on Human–Robot Interaction, La Jolla, California, USA, 2009, 173–180.
  3. [3] W. Lei, L. Chaomin, L. Ming, and C. Jingcao, Trajectory planning of an autonomous mobile robot by evolving ant colony system, International Journal of Robotics and Automation, 32(4), 2017, 4917–4998.
  4. [4] C. Yanfeng, C. Hong, and G. Bingzhao, Real-time path tracking method using differential flatness for car-like mobile robot, International Journal of Robotics and Automation, 33(6), 2018, 5056–5086.
  5. [5] S.M.H. Jafri and R. Kala, Motion planning for an outdoor mobile robot on a probabilistic costmap, International Journal of Robotics and Automation, 34(6), 2019, 0078–0160.
  6. [6] X.T. Truong and T.D. Ngo, Toward socially aware robot navigation in dynamic and crowded environments: A proactive social motion model, IEEE Transactions on Automation Science and Engineering, 14(4), 2017, 1743–1760.
  7. [7] E. Repiso, A. Garrell, and A. Sanfeliu, Adaptive side-by-side social robot navigation to approach and interact with people, International Journal of Social Robotics, 12(4) 2019, 1–22.
  8. [8] H. Khambhaita and R. Alami, Viewing robot navigation in human environment as a cooperative activity, Robotics Research. (Berlin: Springer, 2020), 285–300.
  9. [9] M. Shiomi, F. Zanlungo, K. Hayashi, and T. Kanda, Towards a socially acceptable collision avoidance for a mobile robot navigating among pedestrians using a pedestrian model, International Journal of Social Robotics, 6(3), 2014, 443–455.
  10. [10] X. T. Truong, N.Y. Voo, and T.D. Ngo, Socially aware robot navigation system in human interactive environments, Intelligent Service Robotics, 10(4), 2017, 287–295.
  11. [11] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, The Office Marathon: Robust navigation in an indoor office environment, IEEE Int. Conf. on Robotics and Automation, Anchorage, AK, USA, May, 2010, 300–307.
  12. [12] X.T. Truong and T.D. Ngo, Dynamic social zone based mobile robot navigation for human comfortable safety in social environments, International Journal of Social Robotics, 8(5), 2016, 663–684.
  13. [13] C. Rosmann, F. Hoffmann, and T. Bertram, Planning of multiple robot trajectories in distinctive topologies, 2015 European Conf. on Mobile Robots (ECMR), Lincoln, UK, 2015, 1–6.
  14. [14] C. Rosmann, F. Hoffmann, and T. Bertram, Kinodynamic trajectory optimization and control for car-like robots, Proc. of the Int. Conf. on Intelligent Robots and Systems, Vancouver, BC, Canada, 2017, 5681–5686.
  15. [15] D. Helbing and P. Molnar, Social force model for pedestrian dynamics, Physical Review E, 51(5) 1995, 4282–4286.
  16. [16] D. Fox, W. Burgard, and S. Thrun, The dynamic window approach to collision avoidance, IEEE Transactions on Robotics and Automation, 4(1), 1997, 23–33.
  17. [17] J. van den Berg, C.L. Ming, and D. Manocha, Reciprocal velocity obstacles for real-time multi-agent navigation, Proc. of the IEEE Int. Conf. on Robotics and Automation, 2008, 1928–1935.
  18. [18] J. Snape, J. van den Berg, S. Guy, and D. Manocha, The hybrid reciprocal velocity obstacle, IEEE Transactions on Robotics, 27(4), 2011, 696–706.
  19. [19] D. Zhang, Z. Xie, P. Li, J. Yu, and X. Chen, Real-time navigation in dynamic human environments using optimal reciprocal collision avoidance, Proc. of the 2015 IEEE Int. Conf. on Mechatronics and Automation, Beijing, China, 2015, 2232–2237.
  20. [20] D. Claes, D. Hennes, and K. Tuyls, Towards human-safe navigation with pro-active collision avoidance in a shared workspace, Workshop on On-line decision-making in multirobot coordination, Hamburg, Germany, 2015.
  21. [21] P. Fiorini and Z. Shillert, Motion planning in dynamic environments using velocity obstacles, International Journal of Robotics Research, 17, 1998, 760–772.
  22. [22] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen, Collision avoidance under bounded localization uncertainty, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vilamoura, Portugal, 2012, 1192–1198.
  23. [23] R. Siegwart and I.R. Nourbakhsh, Introduction to Autonomous Mobile Robots, A Bradford Book (Cambridge, MA: MIT Press, 2004).
  24. [24] X.T. Truong, N.Y. Voo, and T.D. Ngo, RGB-D and laser data fusion-based human detection and tracking for socially aware robot navigation framework, in Proc. of the 2015 IEEE Conf. on Robotics and Biomimetics, Zhuhai, China, December 2015, pp. 608–613.
  25. [25] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, Social lstm: Human trajectory prediction in crowded spaces, 2016 IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, 961–971.
  26. [26] A. Vemula, K. Muelling, and J. Oh, Social attention: Modeling attention in human crowds, arXiv:1710.04689v2, 2018.
  27. [27] P. Zhang, W. Ouyang, P. Zhang, J. Xue, and N. Zheng, Sr-lstm: State refinement for lstm towards pedestrian trajectory prediction, arXiv:1903.02793v1, 2019.
  28. [28] Y. Ma, X. Zhu, S. Zhang, R. Yang, W.Wang, and D. Manocha, Trafficpredict: Trajectory prediction for heterogeneous trafficagents, arXiv:1811.02146v5, 2019.

Important Links:

Go Back