Qiang Zou, Ming Cong, Dong Liu, and Yu Du


  1. [1] E.C. Tolman, Cognitive maps in rats and men, Psychological Review, 55(4), 1948, 189–208.
  2. [2] E.I. Moser, M.B. Moser, and B.L. McNaughton, Spatial representation in the hippocampal formation: a history, Nature Neuroscience, 20(11), 2017, 1448–2464.
  3. [3] H. Eichenbaum, The role of the hippocampus in navigation is memory, Journal of Neurophysiology, 117(4), 2017, 1785–1796.
  4. [4] E. Tulving, Episodic and semantic memory, Organization of Memory, 381(79), 1972, 381–403.
  5. [5] H.J. Tang, R. Yan, and K.C. Tan, Cognitive navigation by neuro-inspired localization, mapping, and episodic memory, IEEE Transactions on Cognitive and Developmental Systems, 10(3), 2018, 751–761.
  6. [6] K.L. Stachenfeld, M.M. Botvinick, and S.J.Gershman, The hippocampus as a predictive map, Nature Neuroscience, 20(11), 2017, 1643–1653.
  7. [7] T. Strosslin, D. Sheynikhovich, and R. Chavarriaga, Robust self-localization and navigation based on hippocampal place cells, Neural Networks, 18(9), 2005, 1125–1140.
  8. [8] M.B. Moser, D.C. Rowland, and E.I. Moser, Place cells, grid cells, and memory, Cold Spring Harbor Perspectives Biology, 7(2), 2015, 1–15.
  9. [9] E.I. Moser, E. Kropff, and M.B. Moser, Place cells, grid cells, and the brain’s spatial representation system, Annual Review of Neuroscience, 31(1), 2008, 69–89.
  10. [10] N. Cuperlier, M. Quoy, and P. Gaussier, Neurobiologically inspired mobile robot navigation and planning, Frontiers in Neurorobotics, 1(3), 2007, 1–15.
  11. [11] Q. Zou, M. Cong, D. Liu, and Y. Du, Robotic path planning based on episodic-cognitive map, International Journal of Control Automation and Systems, 17(5), 2019, 1304–1313.
  12. [12] M. Yuan, B. Tian, and V.A. Shim, An entorhinal-hippocampal model for simultaneous cognitive map building, Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, USA, 2015, 586–592.
  13. [13] A. Jauffret, N. Cuperlier, and P. Gaussier, From grid cells and visual place cells to multimodal place cell: a new robotic architecture, Frontiers in Neurorobotics, 9(1), 2015, 1–22.
  14. [14] G. Tejera, M. LIofriu, A. Barrera and A. Weitzenfeld, Bioinspired robotics: a spatial cognition model integrating place cells, grid cells and head direction cells, Journal of Intelligent & Robotic Systems, 91(1), 2018, 85–99.
  15. [15] N.G. Yu, Y.H. Yuan, T. Li, and X.J. Jiang et. al, A cognitive map building algorithm by means of cognitive mechanism of hippocampus, ACTA Automatic Sinica, 44(1), 2018, 52–73.
  16. [16] N.G. Yu, Y.J. Zhai, Y.H. Yuan, and Z.X. Wang et al., A bionic robot navigation algorithm based on cognitive mechanism of hippocampus, IEEE Transactions on Automation Science and Engineering, 16(4), 2019, 1640–1652.
  17. [17] D. Ball, S. Heath, J. Wiles, and G. Wyeth et. al., OpenRatSLAM: an open source brain-based SLAM system, Autonomous Robots, 34(3), 2013, 149–176.
  18. [18] J.J. Ni, Y. Chen, K.Wang, and S.X. Yang, An improved vision-based SLAM approach inspired from animal spatial cognition, International Journal of Robotics & Automation, 34(5), 2019, 491–502.
  19. [19] T.P. Zeng, and B.L. Si, A brain-inspired compact cognitive mapping system, Cognitive Neurodynamics, published online, 2020, doi: 10.1007/s11571-020-09621-6.
  20. [20] A.M. Nuxoll, and J.E. Laird, Enhancing intelligent agents with episodic memory, Cognitive Systems Research, 17–18, 2012, 34–48.
  21. [21] Y. Burak, and I.R. Fiete, Accurate path integration in continuous attractor network models of grid cells, Plos Computational Biology, 5(2), 2009, 1–16.
  22. [22] Z.W. Liang, and Y.Y. Chen, Closed-loop detection algorithm using visual words, International Journal of Robotics & Automation, 29(2), 2014, 155–161.

Important Links:

Go Back