ON EDGE-LAZY RRT COLLISION CHECKING IN SAMPLING-BASED MOTION PLANNING

Lorenzo Ricciardi Celsi and Michela Ricciardi Celsi

References

  1. [1] L. Kavraki and S. LaValle, Motion planning, in B. Siciliano and O. Khatib (eds.), Springer Handbook of Robotics (Berlin, Heidelberg: Springer, 2008).
  2. [2] L. Wang and C. Luo, A hybrid genetic tabu search algorithm for mobile robot to solve AS/RS path planning, International Journal of Robotics and Automation, 206, 2018.
  3. [3] B. Hao and Z. Yan, Recovery path planning for an agricultural mobile robot by Dubins-RRT algorithm, International Journal of Robotics and Automation, 206, 2018.
  4. [4] Y. Liu, M. Cong, H. Dong, and D. Liu, Reinforcement learning and ega-based trajectory planning for dual robots, Interna�tional Journal of Robotics and Automation, 206, 2018.
  5. [5] S. Karaman and E. Frazzoli, Sampling-based algorithms for optimal motion planning, International Journal of Robotics Research, 30(7), 2011, 846�894.
  6. [6] S. LaValle and J. Ku.ner, Rapidly-exploring random trees: Progress and prospects, in B. Donald, K. Lynch, and D. Rus (eds.), Algorithmic and Computational Robotics: New Directions (New York: CRC Press, 2000), 293�308.
  7. [7] R. Seif and M. Oskoei, Motion robot path planning by RRT in dynamic environments, International Journal of Intelligent Systems and Applications, 7(5), 2015, 24�30.
  8. [8] K. Hauser, Lazy collision checking in asymptotically-optimal motion planning, Proc. of IEEE Int. Conf. on Robotics and Automation, Seattle, Washington, 2015, 2951�2957.
  9. [9] S. Sharma, G. Kraetzschmar, C. Scheurer, and R. Bischo., Uni.ed closed form inverse kinematics for the kuka youbot, ROBOTIK, Munich, Germany, 2012.
  10. [10] C. Schindelhauer, Minimal energy path planning for wireless robots, Mobile Networks and Applications, 14, 2009, 309�321.

Important Links:

Go Back