Zhenhua Pan, Kewei Li, Hongbin Deng, and Yiran Wei


  1. [1] T. Xia, M. Yang, R. Yang, and C. Wang, Cyber C3: A prototype cybernetic transportation system for urban applications,IEEE Transactions on Intelligent Transportation Systems,11(1), 2010, 142–152.
  2. [2] S. Jingzhuo, L. Yu, H. Jingtao, X. Meiyu, Z. Juwei, and Z.Lei, Novel intelligent PID control of traveling wave ultrasonicmotor, ISA Transactions, 53(5), 2014, 1670–1679.
  3. [3] J. Dickmann, K. Dietmayer, and M. Rapp, Probabilistic ego-motion estimation using multiple automotive radar sensors,Robotics and Autonomous Systems, 89, 2017, 136–146.
  4. [4] A.M. Neto, A.C. Victorino, I. Fantoni, and J.V. Ferreira,Real-time estimation of drivable image area based on monoc-ular vision, 2013 IEEE Intelligent Vehicles Symposium Work-shops (IV Workshops), Gold Coast, QLD, 2013, 63–68, doi:10.1109/IVWorkshops.2013.6615227.
  5. [5] S. Sivaraman and M.M. Trivedi, Looking at vehicles on theroad: A survey of vision-based vehicle detection, tracking, andbehavior analysis, IEEE Transactions on Intelligent Trans-portation Systems, 14(4), 2013, 1773–1795.
  6. [6] C. Wang,Y Fang, H. Zhao, C. Guo, S. Mita, and H. Zha, Prob-abilistic inference for occluded and multi-view on-road vehicledetection, IEEE Transactions on Intelligent Transportationsystems, 17(1), 2016, 215–229.
  7. [7] Z. Li, W. Zhou, L. Chen, and S. Jin, Bio-inspired approach forimage vehicle detection under low illumination, InternationalJournal of Robotics & Automation, 35(5), 2020, 332–338.
  8. [8] S. Sugimoto, H. Tateda, H. Takahashi, and M. Okutomi, Obsta-cle detection using millimeter-wave radar and its visualizationon image sequence, Proceedings of the 17th International Con-ference on Pattern Recognition, 2004 (ICPR 2004), Cambridge,MA, Vol. 3, 2004, 342–345. doi: 10.1109/ICPR.2004.1334537.
  9. [9] G. Liu, M. Zhou, L. Wang, H. Wang, and X. Guo, A blindspot detection and warning system based on millimeter waveradar for driver assistance, Optik-International Journal forLight and Electron Optics, 135, 2017, 353–365.
  10. [10] M. Bogdan, T. Ruxandra, and Z. Titus, When ultrasonicsensors and computer vision join forces for efficient obstacledetection and recognition, Sensors, 16(12), 2016, 1807.
  11. [11] Y. Su, Y. Zhang, J.M. Alvarez, and H. Kong, An illumination-invariant nonparametric model for urban road detection usingmonocular camera and single-line lidar, 2017 IEEE Interna-tional Conference on Robotics and Biomimetics (ROBIO),Macau, 2017, 68–73, doi: 10.1109/ROBIO.2017.8324396.
  12. [12] S. Budzan and J. Kasprzyk, Fusion of 3D laser scanner anddepth images for obstacle recognition in mobile applications,Optics and Lasers in Engineering, 77, 2016, 230–240.
  13. [13] L. Basaca-Preciado, O. Sergiyenko, J. Rodr´ıguez-Qui˜nonez,and X. Garc´ıa, Optical 3D laser measurement system fornavigation of autonomous mobile robot, Optics and Lasers inEngineering, 54, 2014, 159–169.
  14. [14] J. Zhang, B. Yang, N. Geng, and L. Huang, An obstacledetection system based on monocular vision for apple orchardrobot, International Journal of Robotics & Automation, 32(6),2017, 639–648.
  15. [15] F. Garc´ıa, A. Prioletti, P. Cerri, and A. Broggi, PHD filter forvehicle tracking based on a monocular camera, Expert Systemswith Applications, 91, 2018, 472–479.
  16. [16] G. Aragon-Camarasa, H. Fattah, and J.P. Siebert, Towardsa unified visual framework in a binocular active robot vi-sion system, Robotics and Autonomous Systems, 58(3), 2010,276–286.9
  17. [17] M. Perrollaz, R. Labayrade, D. Gruyer, A. Lambert, and D.Aubert, Proposition of generic validation criteria using stereo-vision for on-road obstacle detection, International Journal ofRobotics &Automation, 29(1), 2014, 32–43.
  18. [18] A. Broggi, A. Fascioli, M. Carletti, T. Graf, and M. Meinecke, Amulti-resolution approach for infrared vision-based pedestriandetection, IEEE Intelligent Vehicles Symposium, Parma, Italy,2004, 7–12.
  19. [19] C. Otto, W. Gerber, F.P. Leon, and J. Wirnitzer, A jointintegrated probabilistic data association filter for pedestriantracking across blind regions using monocular camera andradar, 2012 IEEE Intelligent Vehicles Symposium, Alcala deHenares, 2012, 636–641.
  20. [20] Z. Ji and D. Prokhorov, Radar-vision fusion for object classifi-cation, IEEE, Proceedings of the 11th International Conferenceon Information Fusion Cologne Germany, 2008, 1–7.
  21. [21] D.M. Gavrila, J. Giebel, and S. Munder, Vision-based pedes-trian detection: The PROTECTOR system, IEEE IntelligentVehicles Symposium, Parma, Italy, 2004, 13–18.
  22. [22] G. Alessandretti, A. Broggi, and P. Cerri, Vehicle and guardrail detection using radar and vision data fusion, IEEE Trans-actions on Intelligent Transportation Systems, 8, 2007, 95–105.
  23. [23] U. Kadow, G. Schneider, and A. Vukotich, Radar-vision basedvehicle recognition with evolutionary optimized and boostedfeatures, 2007 IEEE Intelligent Vehicles Symposium, Istanbul,2007, 749–754.
  24. [24] B. Bhanu, B. Roberts, and J. Ming, Inertial navigation sensorintegrated motion analysis for obstacle detection, IEEE Inter-national Conference on Robotics and Automation, Cincinnati,OH, Vol. 5, no. 2, 1990, 954–959.
  25. [25] S. Wender and K. Dietmayer, 3D vehicle detection using alaser scanner and a video camera, IET Intelligent TransportSystems, 2(2), 2008, 105–112.
  26. [26] X. Wang, L. Xu, H. Sun, J. Xin, and N. Zheng, On-roadvehicle detection and tracking using MMW radar and monovi-sion fusion, IEEE Transactions on Intelligent TransportationSystems, 17(7), 2016, 2075–2084.
  27. [27] M. Jelavic, V. Petrovic, and N. Peric, A practical methodfor calibration of laser radar and camera based on doubleparallel planes, Journal of Central South University (Scienceand Technology), 43(12), 2012, 4735–4742.
  28. [28] D. Gao, J. Duan, X. Yang, and B. Zheng, A method of spatialcalibration for camera and radar, 2010 8th World Congress onIntelligent Control and Automation, Jinan, 2010, 6211–6215.
  29. [29] H. Li, M. Yang, and H. Qian, Camera and laser scannerco-detection of pedestrians, 2011.
  30. [30] A. Mendes and U. Nunes, Situation-based multi-targetdetection and tracking with laser scanner in outdoor semi-structured environment, 2004 IEEE/RSJ International Con-ference on Intelligent Robots and Systems (IROS) (IEEE Cat.No. 04CH37566), Sendai, Vol. 1, 2004, 88–93.
  31. [31] N. Dalal and B. Triggs, Histograms of oriented gradients forhuman detection, 2005 IEEE Computer Society Conference onComputer Vision and Pattern Recognition (CVPR’05), SanDiego, CA, 2005, 886–893.

Important Links:

Go Back