ROBUST ADAPTIVE OUTPUT-FEEDBACK DYNAMIC SURFACE CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH TIME-VARYING PARAMETERS

Mojgan Elmi, Heidar A. Talebi, and Mohammad B. Menhaj

References

  1. [1] Y. Sun and F. Meng, Reachable set estimation for a class of nonlinear time-varying systems, Complexity, 2017, 2017, 1–6.
  2. [2] Y.-J. Liu, S. Lu, D. Li and S. Tong, Adaptive controller design-based ABLF for a class of nonlinear time-varying state constraint systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(7), 2016, 1546–1553.
  3. [3] K.S. Tsakalis and P.A. Ioannou, A new indirect adaptive control scheme for time-varying plants, Proceedings of the 27th IEEE Conference on Decision and Control, Austin, TX, USA, 1988, 2419–2424.
  4. [4] K. Tsakalis and P. Ioannou, Adaptive control of linear timevarying plants, Automatica, 23(4), 1987, 459–468.
  5. [5] K.S. Tsakalis and P.A. Ioannou, Adaptive control of linear timevarying plants: A new model reference controller structure, IEEE Transactions on Automatic Control, 34(10), 1989, 1038– 1046.
  6. [6] K. Abidi and J.-X. Xu, A discrete-time periodic adaptive control approach for time-varying parameters with known periodicity, IEEE Transactions on Automatic Control, 53(2), 2008, 575–581.
  7. [7] P.R. Pagilla, B. Yu and K.L. Pau, Adaptive control of time-varying mechanical systems: Analysis and experiments, IEEE/ASME Transactions on Mechatronics, 5(4), 2000, 410– 418.
  8. [8] M. Elmi, H.A. Talebi and M.B. Menhaj, Robust adaptive dynamic surface control of nonlinear time-varying systems in strict-feedback form, International Journal of Control, Automation and Systems, 17(6), 2019, 1432–1444.
  9. [9] N.S. Nise, Control system engineering, (New York: John Wiley & Sons, 2011).
  10. [10] C.-T. Chen, Linear system theory and design (Oxford: Oxford University Press, 1998).
  11. [11] I. Mizumoto, R. Michino, Y. Tao, and Z. Iwai, Robust adaptive tracking control for time-varying nonlinear systems with higher order relative degree, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), Maui, HI, USA, 2003, 4303–4308.
  12. [12] I. Kanellakopoulos, P. Kokotovic, and A. Morse, Adaptive output-feedback control of a class of nonlinear systems, Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, UK, 1991, 1082–1087.
  13. [13] M. Krsti´c, I. Kanellakopoulos, and P. Kokotovi´c, Adaptive nonlinear control without overparametrization, Systems & Control Letters, 19(3), 1992, 177–185.
  14. [14] M. Krstic, I. Kanellakopoulos, and P.V. Kokotovic, Nonlinear and adaptive control design, (New York: Wiley, 1995).
  15. [15] M. Song, Y. Lin, and R. Huang, Robust adaptive dynamic surface control for linear time-varying systems, International Journal of Adaptive Control and Signal Processing, 28(10), 2014, 932–948.
  16. [16] S. Tong, Y. Li, and P. Shi, Fuzzy adaptive backstepping robust control for SISO nonlinear system with dynamic uncertainties, Information Sciences, 179(9), 2009, 1319–1332.
  17. [17] S. Tong, T. Wang, Y. Li, and B. Chen, A combined backstepping and stochastic small-gain approach to robust adaptive fuzzy output feedback control, IEEE Transactions on Fuzzy Systems, 21(2), 2012, 314–327.
  18. [18] S. Tong and Y. Li, Adaptive fuzzy output feedback control for switched nonlinear systems with unmodeled dynamics, IEEE Transactions on Cybernetics, 47(2), 2016, 295–305.
  19. [19] D. Swaroop, J. Gerdes, P.P. Yip, and J.K. Hedrick, Dynamic surface control of nonlinear systems, Proceedings of the 1997 American Control Conference (Cat. No. 97CH36041), Albuquerque, NM, USA, 1997, 3028–3034.
  20. [20] D. Swaroop, J.K. Hedrick, P.P. Yip, and J.C. Gerdes, Dynamic surface control for a class of nonlinear systems, IEEE Transactions on Automatic Control, 45(10), 2000, 1893–1899.
  21. [21] G.-Q. Wu, S.-M. Song and J.-G. Sun, Adaptive dynamic surface control for spacecraft terminal safe approach with input saturation based on tracking differentiator, International Journal of Control, Automation and Systems, 16(3), 2018, 1129–1141.
  22. [22] L. Edalati, A.K. Sedigh, M.A. Shooredeli, and A. Moarefianpour, Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints, Mechanical Systems and Signal Processing, 100, 2018, 311–329.
  23. [23] M. Lv, Y. Wang, S. Baldi, Z. Liu, and Z. Wang, A DSC method for strict-feedback nonlinear systems with possibly unbounded control gain functions, Neurocomputing, 275, 2018, 1383–1392.
  24. [24] S. Gao, H. Dong, B. Ning, and J. Xun, Adaptive neural dynamic surface control with truncated adaptation for uncertain saturated nonlinear systems, Control and Intelligent Systems, 43(4), 2015, 175–182.
  25. [25] H. Dong, Y. Wang, and S. Gao, Observer-based adaptive fuzzy dynamic surface nonlinear control with sampled output and delayed measurement, Control and Intelligent Systems, 45(4), 2017.
  26. [26] S. Li and Z. Xiang, Adaptive prescribed performance control for switched nonlinear systems with input saturation, International Journal of Systems Science, 49(1), 2018, 113–123.
  27. [27] S. Li, C. K. Ahn, and Z. Xiang, Adaptive fuzzy control of switched nonlinear time-varying delay systems with prescribed performance and unmodeled dynamics, Fuzzy Sets and Systems, 371, 2019, 40–60.
  28. [28] A. Rabeh, F. Ikhouane, and E. Giri, Nonlinear time-varying system control using the adaptive backstepping technique, 2001 European Control Conference (ECC), Porto, Portugal, 2001, 2422–2427.
  29. [29] R. Marino and P. Tomei, Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems, Automatica, 29(1), 1993, 181–189.
  30. [30] R. Marino and P. Tomei, Robust adaptive state-feedback tracking for nonlinear systems, IEEE Transactions on Automatic Control, 43(1), 1998, 84–89.
  31. [31] B. Song and J.K. Hedrick, Dynamic surface control of uncertain nonlinear systems: an LMI approach (Berlin: Springer Science & Business Media, 2011).
  32. [32] J. Na, J. Yang, X. Ren and Y. Guo, Robust adaptive estimation of nonlinear system with time-varying parameters, International Journal of Adaptive Control and Signal Processing, 29(8), 2015, 1055–1072.
  33. [33] R. Marino and P. Tomei, An adaptive output feedback control for a class of nonlinear systems with time-varying parameters, IEEE Transactions on Automatic Control, 44(11), 1999, 2190– 2194.
  34. [34] C.C. De Wit, H. Olsson, K.J. Astrom and P. Lischinsky, A new model for control of systems with friction, IEEE Transactions on Automatic Control, 40(3), 1995, 419–425. 72

Important Links:

Go Back