MOBILE ROBOT NAVIGATION USING MONOCULAR VISUAL−INERTIAL FUSION

Jianxian Cai, Penggang Gao, Yanxiong Wu, and Zhitao Gao

References

  1. [1] M. Lemmens, Global navigation satellite systems and inertial navigation Geo-information (Netherland: Springer, 2011), 55–83.
  2. [2] J. Fuentes-Pacheco, J. Ruiz-Ascencio, J.M. Rend´on-Mancha, Visual simultaneous localization and mapping: a survey, Artificial intelligence review, 43(1), 2015, 55–81.
  3. [3] R. Mur-Artal and J.D. Tard´os, Orb-slam2: An open-source slam system for monocular, stereo, and RGB-D cameras, IEEE Transactions on Robotics, 33(5), 2017, 1255–1262. 39
  4. [4] R. Gomez-Ojeda, F.A. Moreno, D. Zuñiga-Noël, et al., PLSLAM: A stereo SLAM system through the combination of points and line segments, IEEE Transactions on Robotics, 35(3), 2019, 734–746.
  5. [5] L. Hu, W. Xu, K. Huang, et al., Deep-SLAM++: Objectlevel RGBD SLAM based on class-specific deep shape priors, arXiv:1907.09691, 2019.
  6. [6] M. Schaerf, M. Mecella, D.V. Igorevna, K.I. Anatolievich (eds.): Proceedings of REMS 2018 – Russian Federation & Europe Multidisciplinary Symposium on Computer Science and ICT, Stavropol – Dombay, Russia, 15–20 October 2018, published at http://ceur-ws.org
  7. [7] M. Burri, H. Oleynikova, M.W. Achtelik, and R. Siegwart, Real-time visual-inertial mapping, re-localization and planning onboard MAVs in unknown environment, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Hamburg, Germany, 2015, 1872–1878.
  8. [8] U. Qayyum, Q. Ahsan, and Z. Mahmood, IMU aided RGB-D SLAM, Int. Bhurban Conf. on Applied Sciences and Technology, Islamabad, Pakistan, 2017, 337–341.
  9. [9] Z. Shan, R. Li, and S. Schwertfeger, RGBD-inertial trajectory estimation and mapping for ground robots, Sensors, 19(10), 2019, 2251.
  10. [10] A.I. Mourikis and S.I. Roumeliotis, A multi-state constraint Kalman filter for vision-aided inertial navigation, 2007 IEEE Int. Conf. on Robotics and Automation, Roma, Italy, 2007, 3565–3572.
  11. [11] M. Bloesch, S. Omari, M. Hutter, et al., Robust visual inertial odometry using a direct EKF-based approach, 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, 298–304.
  12. [12] S. Lynen, M.W. Achtelik, S. Weiss, et al., A robust and modular multi-sensor fusion approach applied to MAV navigation, 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Tokyo, Japan, 2013, 3923–3929.
  13. [13] J.M. Falquez, M. Kasper, and G. Sibley, Inertial aided dense and semi-dense methods for robust direct visual odometry, 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Daejeon, Korea, 2016, 3601–3607.
  14. [14] S. Leutenegger, S. Lynen, M. Bosse, et al., Keyframe-based visual–inertial odometry using nonlinear optimization, The International Journal of Robotics Research, 34(3), 2015, 314–334.
  15. [15] R. Mur-Artal and J.D. Tard´os, Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras, IEEE Transactions on Robotics, 33(5), 2017, 1255–1262.
  16. [16] C. Forster, L. Carlone, F. Dellaert, et al., On-manifold preintegration for real-time visual—inertial odometry, IEEE Transactions on Robotics, 33(1), 2017, 1–21.
  17. [17] T. Qin, P. Li, and S. Shen, Vins-mono: A robust and versatile monocular visual-inertial state estimator, IEEE Transactions on Robotics, 34(4), 2018, 1004–1020.
  18. [18] M. Keller, F. Hoffmann, C. Hass, et al., Planning of optimal collision avoidance trajectories with timed elastic bands, IFAC Proceedings Volumes, 47(3), 2014, 9822–9827.
  19. [19] J. Kim and J.P. Ostrowski, Motion planning a aerial robot using rapidly-exploring random trees with dynamic constraints, IEEE Int. Conf. on Robotics and Automation, Proc. of ICRA, Kongresszentrum Karlsruhe, Karlsruhe, Germany, 2003, 2200–2205.
  20. [20] L.H. Thomas, Elliptic problems in linear difference equations over a network, Watson Scientific Computing Laboratory Report, Columbia University, New York, 1949.
  21. [21] J. Engel, T. Schöps, and D. Cremers, LSD-SLAM: Large-scale direct monocular SLAM, Computer Vision – ECCV 2014 (Berlin: Springer International Publishing, 2014), Zurich, Switzerland, 834–849.
  22. [22] M. Kok, J.D. Hol and T.B. Schön, Using Inertial Sensors for position and orientation estimation, Foundations and Trends in Signal Processing, 11(1–2), 1–153. http://dx.doi.org/10.1561/2000000094
  23. [23] L.K. Bieniasz, Extension of the Thomas algorithm to a class of algebraic linear equation systems involving quasi-blocktridiagonal matrices with isolated block-pentadiagonal rows, assuming variable block dimensions, Computing, 67(4), 2001, 269–285.
  24. [24] M. Quigley, K. Conley, B. Gerkey, et al., ROS: An open-source robot operating system, ICRA Workshop on Open Source Software, Kobe, Japan, 2009, 5.

Important Links:

Go Back