MODELLING OF A DOUBLE-INPUT BIDIRECTIONAL DC–DC CONVERTER FOR HESS AND UNIFIED CONTROLLER DESIGN FOR DC MICROGRID APPLICATIONS, 128-140.

Punna Srinivas and Udaya Bhasker Manthati

References

  1. [1] J. Xiao, P. Wang, and L. Setyawan, Implementation of multiple-slack-terminal DC microgrids for smooth transitions between grid-tied and islanded states, IEEE Transactions on Smart Grid, 7(1), 2016, 273–281.
  2. [2] M. Karbalaye Zadeh, R. Gavagsaz-Ghoachani, S. Pierfederici, B. Nahid-Mobarakeh, and M. Molinas, Stability analysis and dynamic performance evaluation of a power electronics-based DC distribution system with active stabilizer, IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(1), 2016, 93–102.
  3. [3] G. Graditi, M.G. Ippolito, E. Telaretti, and G. Zizzo, An innovative conversion device to the grid interface of combined RES-based generators and electric storage systems, IEEE Transactions on Industrial Electronics, 62(4), 2015, 2540–2550.
  4. [4] M.E Choi, S.W. Kim, and S.W. Seo, Energy management optimization in a battery/supercapacitor hybrid energy storage system, IEEE Transactions on Smart Grid, 3(1), 2012, 463–472.
  5. [5] X. Feng, H.B. Gooi, and S.X. Chen, Hybrid energy storage with multimode fuzzy power allocator for PV systems, IEEE Transactions on Sustainable Energy, 5(2), 2014, 389–397.
  6. [6] L. Gao, R.A. Dougal, and S. Liu, Power enhancement of an actively controlled battery/ultracapacitor hybrid, IEEE Transactions on Power Electronics, 20(1), 2005, 236–243.
  7. [7] A.M. Gee, F.V.P. Robinson, and R.W. Dunn, Analysis of battery lifetime extension in a small-scale wind-energy system using supercapacitors, IEEE Transactions on Energy Conversion, 28(1), 2013, 24–33.
  8. [8] J.P. Zheng, T.R. Jow, and M.S. Ding, Hybrid power sources for pulsed current applications, IEEE Transactions on Aerospace and Electronic Systems, 37(1), 2001, 288–292.
  9. [9] F.A Inthamoussou, J. Pegueroles-Queralt, and F.D. Bianchi, Control of a supercapacitor energy storage system for microgrid applications, IEEE Transactions on Energy Conversion, 28(3), 2013, 690–697.
  10. [10] O. Laldin, M. Moshirvaziri, and O. Trescases, Predictive algorithm for optimizing power flow in hybrid ultracapacitor/battery storage systems for light electric vehicles, IEEE Transactions on Power Electronics, 28(8), 2013, 3882–3895.
  11. [11] B. Wang, L. Xian, U. Manandhar, J. Ye, A. Ukil, and H. Beng Gooi. A stand-alone hybrid PV/fuel cell power systems using single-inductor dual-input single-output boost converter with model predictive control, 2017 Asian Conf. on Energy, power and Transportation Electrification (ACEPT), 2017, 1–5.
  12. [12] C. Zhao, S.D. Round, and J.W. Kolar, An isolated three-port bidirectional DC–DC converter with decoupled power flow management, IEEE Transactions on Power Electronics, 23(5), 2008, 2443–2453.
  13. [13] J. Zeng, W. Qiao, L. Qu, and Y. Jiao, An isolated multiport DC–DC converter for simultaneous power management of multiple different renewable energy sources, IEEE Journal of Emerging and Selected Topics in Power Electronics, 2(1), 2014, 70–78.
  14. [14] Y. Wang, F. Han, L. Yang, R. Xu, and R. Liu, A three-port bidirectional multi-element resonant converter with decoupled power flow management for hybrid energy storage systems, IEEE Access, 6, 2018.
  15. [15] P. Yang, C.K. Tse, J. Xu, and G. Zhou, Synthesis and analysis of double-input single-output DC/DC converter, IEEE Transaction on Industrial Electronics, 62(10), 2015, 6284–6295. 139
  16. [16] A. Khaligh, J. Cao, and Y.J. Lee, A multiple-input DC–DC converter topology, IEEE Transactions on Power Electronics, 24(3), 2009, 862–868.
  17. [17] B. Wang, L. Xian, U. Manandhar, J. Ye, X. Zhang, H.B. Gooi, and A. Ukil, Hybrid energy storage system using bidirectional single-inductor multipleport converter with model predictive control in DC microgrids, Electric Power Systems Research, 173, 2019, 38–47.
  18. [18] R. Faraji and H. Farzanehfard, Soft-switching nonisolated high step-up three-port DC-DC converter for hybrid energy systems, IEEE Transactions on Power Electronics, 33, 2018.
  19. [19] Y. Sato, M. Uno, and H. Nagata, Nonisolated multiport converters based on integration of PWM converter and phase-shift-switched capacitor converter, IEEE Transactions on Power Electronics, 35(1), 2020.
  20. [20] Z. Yi, W. Dong, and A.H. Etemadi, A unified control and power management scheme for PV-battery-based hybrid microgrids for both grid-connected and islanded modes, IEEE Transactions on Smart grid, 9 (6), 2018.
  21. [21] H. Behjati and A. Davoudi, Power budgeting between diversified energy sources and loads using a multiple-input multiple-output DC–DC converter, IEEE Transactions on Industry Applications, 49(6), 2013, 2761–2772.
  22. [22] K. Filsoof and P.W. Lehn, A bidirectional multiple-input multiple-output modular multilevel DC–DC converter and its control design, IEEE Transactions on Power Electronics, 31(4), 2016, 2767–2779.
  23. [23] R.J. Wai, C.Y. Lin, and B.H. Chen, High-efficiency DC–DC converter with two input power sources, IEEE Transactions on Power Electronics, 27(4), 2012, 1862–1875.
  24. [24] F. Nejabatkhah, S. Danyali, S.H. Hosseini, M. Sabahi, and S.M. Niapour, Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system, IEEE Transactions on Power Electronics, 27(5), 2012, 2309–2324.
  25. [25] R.J. Wai and B.H. Chen, High-efficiency dual-input interleaved DC–DC converter for reversible power sources, IEEE Transactions on Power Electronics, 29(6), 2014, 2903–2921.
  26. [26] C.W. Chen, C.Y. Liao, K.H. Chen, and Y.M. Chen, Modeling and controller design of a semiisolated multiinput converter for a hybrid PV/wind power charger system, IEEE Transactions on Power Electronics, 30(9), 2015, 4843–4853.
  27. [27] S. Danyali, S.H. Hosseini, and G.B. Gharehpetian, New extendable single-stage multi-input DC–DC/AC boost converter, IEEE Transactions on Power Electronics, 29(2), 2014, 775–788.
  28. [28] F. Guo, L. Fu, X. Zhang, C. Yao, H. Li, and J. Wang, A family of quasi-switched-capacitor circuit-based dual-input DC/DC converters for photovoltaic systems integrated with battery energy storage, IEEE Transactions on Power Electronics, 31(12), 2016, 8237–8246.
  29. [29] K. Gummi and M. Ferdowsi, Double-input DC–DC power electronic converters for electric-drive vehicles—topology exploration and synthesis using a single-pole triple-throw switch, IEEE Transactions on Industrial Electronics, 57(2), 2010, 617–623.
  30. [30] R.R. Ahrabi, H. Ardi, M. Elmi, and A. Ajami, A novel stepup multiinput DC–DC converter for hybrid electric vehicles application, IEEE Transactions on Power Electronics, 32(5), 2017, 3549–3561.
  31. [31] F. Akar, Y. Tavlasoglu, E. Ugur, B. Vural, and I. Aksoy, A bidirectional nonisolated multi-input DC–DC converter for hybrid energy storage systems in electric vehicles, IEEE Transactions on Vehicular Technology, 65(10), 2016, 7944–7955.
  32. [32] A. Nahavandi, M.T. Hagh, M.B.B. Sharifian, and S. Danyali, A nonisolated multiinput multioutput DC–DC boost converter for electric vehicle applications, IEEE Transactions on Power Electronics, 30(4), 2015, 1818–1835.
  33. [33] A. Hintz, U.R. Prasanna, and K. Rajashekara, Novel modular multiple-input bidirectional DC–DC power converter (MIPC) for HEV/FCV application, IEEE Transactions on Industrial Electronics, 62(5), 2015, 3163–3172.
  34. [34] S.K. Kollimalla and M.K Mishra, A novel adaptive P & O MPPT algorithm considering sudden changes in the irradiance. IEEE Transaction on Energy conversion, 29(3), 2014, 602–610.

Important Links:

Go Back