ADAPTIVE ROBUST CONTROL WITH EXTENDED STATE OBSERVER FOR HUMAN–ROBOT IMPEDANCE, 1-12.

Jiantao Yang, Yan Zeng, and Yuehong Yin

References

  1. [1] H. Banerjee, Z.T.H. Tse, and H. Ren, Soft robotics with compliance and adaptation for biomedical applications and forthcoming challenges, International Journal of Robotics and Automation, 33(1), 2018, 69–79.
  2. [2] W. Keyi, Force configuration of a rigid–flexible gait rehabilitation robot, International Journal of Robotics and Automation, 33(60), 2018.
  3. [3] X. Chen, Y. Zeng, and Y. Yin, Improving the transparency of an exoskeleton knee joint based on the understanding of motor intent using energy kernel method of EMG, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(6), 2017, 577–588.
  4. [4] M. Sharifi, S. Behzadipour, and G. Vossoughi, Nonlinear model reference adaptive impedance control for human–robot interactions, Control Engineering Practice, 32, 2014, 9–27.
  5. [5] F. Yuanjie and Y. Yin, Active and progressive exoskeleton rehabilitation using multisource information fusion from EMG and force-position EPP, IEEE Transactions on Biomedical Engineering, 12(60), 2013, 3314–3321.
  6. [6] G. Aguirre-Ollinger, J. Edward Colgate, M.A. Peshkin, and A. Goswami, Active-impedance control of a lower-limb assistive exoskeleton, 2007 IEEE 10th Int. Conf. on Rehabilitation Robotics, ICORR’07, Noordwijk, The Netherlands, 2007.
  7. [7] N. Hogan, Impedance control: An approach to manipula- tion: Part II—Implementation, Journal of Dynamic Systems, Measurement, and Control, 107(1), 1985, 8–16.
  8. [8] R. Carelli and R. Kelly, An adaptive impedance/force controller for robot manipulators, IEEE Transactions on Automatic Control, 36(8), 1991, 967–971.
  9. [9] G. Xu, A. Song, and H. Li, Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network, Journal of Intelligent & Robotic Systems, 62(3–4), 2011, 501–525.
  10. [10] Y. Chen, Adaptive fuzzy and robust H∞ compensation control for uncertain robot, International Journal of Robotics and Automation, 2(4), 2013, 174–188.
  11. [11] Q. Chen J. Wan, and J. Ai, L1 adaptive control of a generic hypersonic vehicle, model with a blended pneumatic and thrust, vectoring control strategy, Science China Information Sciences, 60, 2017, 148.
  12. [12] B. Yao and M. Tomizuka, Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form, Automatica, 33(5), 1997, 893–900.
  13. [13] B. Yao and M. Tomizuka, Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms, Automatica, 37(9), 2001, 1305–1321.
  14. [14] H. Xie, Z. Liu, and H. Yang, Pressure regulation for earth pressure balance control on shield tunneling machine by using adaptive robust control, Chinese Journal of Mechanical Engineering, 29(3), 2016, 598–606.
  15. [15] B. Yao, F. Bu, J. Reedy, and G.T.-C. Chiu, Adaptive ro- bust motion control of single-rod hydraulic actuators: theory and experiments, IEEE/ASME Transactions on Mechatronics, 5(1), 2000, 79–91.
  16. [16] B. Yao, F. Bu, and G.T.C. Chiu, Non-linear adaptive robust control of electro-hydraulic systems driven by double-rod actuators, International Journal of Control, 74(8), 2001, 761–775.
  17. [17] C. Guan and S. Pan, Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters, IEEE Transactions on Control Systems Technology, 16(3), 2008, 434–445.
  18. [18] V.I. Utkin, Sliding modes in control and optimization (Berlin, Heidelberg: Springer, 1992).
  19. [19] J.Y. Hung, W. Gao, and J.C. Hung, Variable structure control: a survey, IEEE Transactions on Industrial Electronics, 40(1), 1993, 2–22. 11
  20. [20] A. Levant, Principles of 2-sliding mode design, Automatica, 43(4), 2007, 576–586.
  21. [21] K. Kherraz, M. Hamerlain, and N. Achour, Robust neurofuzzy sliding mode controller for a flexible robot manipulator, International Journal of Robotics and Automation, 30(1), 2015, 40–49.
  22. [22] T.L. Mai, Y.N. Wang, and T.Q. Ngo, Adaptive tracking control for robot manipulators using fuzzy wavelet neural networks, International Journal of Robotics and Automation, 30(1), 2015, 26–39.
  23. [23] W. He, Z. Li, and C.L. Philip Chen, A survey of human- centered intelligent robots: issues and challenges, IEEE/CAA Journal of Automatica Sinica, 4(4), 2017, 602–609.
  24. [24] S. Zhang, Y. Dong, Y. Ouyang, Z. Yin, and K. Peng, Adaptive neural control for robotic manipulators with output constraints and uncertainties, IEEE Transactions on Neural Networks and Learning Systems, 99(2018), 1–11.
  25. [25] H. Wei and Y. Dong, Adaptive fuzzy neural network control for a constrained robot using impedance learning, IEEE Transactions on Neural Networks and Learning Systems, 29(4), 2018, 1174–1186.
  26. [26] D. Zhang and B. Wei, Payload variation compensation for robotic arms through model reference control approach, International Journal of Robotics and Automation, 31(6), 2016, 530–538.
  27. [27] M. Chen, B. Jiang, and R.X. Cui, Robust control for rigid robotic manipulators using nonlinear disturbance observer, International Journal of Robotics and Automation, 29(3), 2014, 305–311.
  28. [28] Y. Zhao, H. Yu, J. Zhang, J. Yang, and T. Zhao, Kinematics, dynamics and control of a stabilized platform with a 6-RUS parallel mechanism, International Journal of Robotics and Automation, 32(3), 2017, 283–290.
  29. [29] J. Han, From PID to active disturbance rejection control, IEEE Transactions on Industrial Electronics, 56(3), 2009, 900–906.
  30. [30] M. Chen and S.S. Ge, Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer, IEEE Transactions on Industrial Electronics, 62(12), 2015, 7706–7716.
  31. [31] B. Ren, S.S. Ge, K.P. Tee, and T.H. Lee, Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function, IEEE Transactions on Neural Networks, 21(8), 2010, 1339–1345.
  32. [32] T. Sun, H. Pei, Y. Pan, H. Zhou, and C. Zhang, Neural network-based sliding mode adaptive control for robot manipulators, Neurocomputing, 74 (14–15), 2011, 2377–2384.
  33. [33] W. He, S.S. Ge, Y. Li, E. Chew, and Y.S. Ng, Neural network control of a rehabilitation robot by state and output feedback, Journal of Intelligent & Robotic Systems, 80 (1), 2015, 15–31.
  34. [34] M.W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control (NY: Wiley, 2006).
  35. [35] G.J. Liu and A.A. Goldenberg, Robust hybrid impedance control of robot manipulators, Proc. of 1991 IEEE Int. Conf. on Robotics and Automation, Sacramento, CA, USA, 1991.
  36. [36] J.Q. Han, Nonlinear tracking-differentiator, Journal of Systems Science & Mathematical Sciences, 14(2), 1994, 177–183.
  37. [37] J.J.E. Slotine and W. Li, Applied nonlinear control (Englewood Cliffs, NJ: Prentice Hall, 1991).
  38. [38] A.A. Godbole, J.P. Kolhe, and S.E. Talole, Performance analysis of generalized extended state observer in tackling sinu- soidal disturbances, IEEE Transactions on Control Systems Technology, 21(6), 2013, 2212–2223.
  39. [39] Z. Qing, L.Q. Gao, and Z. Gao, On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics, 2007 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 2008.
  40. [40] J. Yang, J. Wang, B. Wu, and S. Li, Extended state observer-based sliding mode control for PWM-based DC–DC buck power converter systems with mismatched disturbances, IET Control Theory & Applications, 9(4), 2015, 579–586.
  41. [41] M. Sharifi, S. Behzadipour, and G.R. Vossoughi, Model reference adaptive impedance control in Cartesian coordinates for physical human–robot interaction, Advanced Robotics, 28(19), 2014, 1277–1290.
  42. [42] B. Yao, Adaptive robust control of nonlinear systems with application to control of mechanical systems. Diss. University of California, Berkeley, 1996.

Important Links:

Go Back