NEAREST NEIGHBOUR GRADIENT ALGORITHM IN SUBSPACE PREDICTIVE CONTROL UNDER FAULT CONDITION, 162-171.

Dong Xi-guang, Guo Xiao-yong, and Wang Jian-hong

References

  1. [1] A. Chiuso, The role of vector autoregressive modeling inpredictor based subspace identification, Automatica, 43(6),2007, 1034–1048.
  2. [2] A. Chiuso, On the relation between CCA and predictorbased subspace identification, IEEE Transactions of AutomaticControl, 52(10), 2008, 1795–1811.
  3. [3] W. Jianhong, Application of subspace predictive control inactive noise and vibration control, Journal of Vibration andShock, 30(10), 2011, 129–135.
  4. [4] W. Jianhong, Application of ellipsoid optimization in subspacepredictive control, Journal of Applied Science, 28(4), 2010,424–429.
  5. [5] W. Jianhong, Fast gradient algorithm in subspace predictivecontrol under fault estimation, Journal of Shanghai JiaotongUniversity, 47(7), 2013, 1015–1021.
  6. [6] L. Ljung, System identification: Theory for the user (Engle-wood Cliffs, NJ: Prentice Hall, 1999)
  7. [7] S. Boyd and L. Vandenberghe, Convex optimization (UK:Cambridge University Press, 2008).
  8. [8] M. Zeilinger, Real time suboptimal model predictive controlusing a combination of explicit MPC and online optimiza-tion, IEEE Transactions of Automatic Control, 56(7), 2011,1524–1534.
  9. [9] K. Jakob, A design algorithm using external perturbation toimprove iterative feedback tuning convergence, Automatica,47(2), 2011, 2665–2670.
  10. [10] C. Feller, An improved algorithm for combinatorial multi-parameteric quadratic programming, Automatica, 49(5), 2013,1370–1376.
  11. [11] M. Casini, A. Garulli, and A. Vicino, A linear programmingapproach to online set membership parameter estimation forlinear regression models, International Journal of AdaptiveControl and Signal Processing, 31(3), 2017, 360–378.
  12. [12] X. Zhang, M. Kamgarpour, and A. Georghiou, Robust optimalcontrol with adjustable uncertainty sets, Automatica, 75(1),2017, 249–259.
  13. [13] M. Tanaskovic, L. Fagiano, and C. Novara, Data driven controlof nonlinear systems: an on line direct approach, Automatica,75(1), 2017, 1–10.
  14. [14] C. Novara, S. Formentin, and S.M. Savaresi, Data driven designof two degrees of freedom nonlinear controllers, Automatica,72(10), 2016, 19–27.
  15. [15] M. Blackman and R. Sharma, Model based control of utilityscale wind turbines, Control and Intelligent Systems, 45(1),2017, 1–9.
  16. [16] R.J. Mascod, Adaptive VRFT based on MFAC for the speedcontrol of PMDC motor, Control and Intelligent Systems,45(2), 2017, 30–40.

Important Links:

Go Back