OPTIMAL CLOSED-LOOP INPUT SIGNAL FOR INTERNAL MODEL CONTROL, 122-128.

De-zhi Tang and Jian-hong Wang

References

  1. [1] A. Alostaz and B. Hamed, Optimized tracking of a movingobject with a robotic eye system, Control and IntelligentSystems, 44(1), 2016, 12–20.
  2. [2] U. Forssel and L. Ljung, Some results on optimal experimentdesign, Automatica, 36(5), 2003, 749–756.
  3. [3] Y. Zhu and F. Butoyi, Optimal closed-loop identification testdesign for internal model control, Automatica, 33(4), 2000,1237–1241.
  4. [4] H. Hjalmarsson and B. Ninness, Least-squares estimationof a class of frequency functions: A finite sample varianceexpression, Automatica, 42(7), 2006, 589–600.
  5. [5] B. Ninness and H. Hjalmarsson, On the frequency domainaccuracy of closed-loop estimation, Automatica, 41(2), 2005,1109–1122.
  6. [6] C.R. Rojas, The cost of complexity in system identification:Frequency function estimation of finite impulse response system, IEEE Transaction on Automatic Control, 55(10), 2010,2298–2309.
  7. [7] H. Hjalmarsson, From experiment design to closed-loop control,Automatica, 41(3), 2005, 393–438.
  8. [8] M.C. Campi, An iterative identification method for linearcontinuous time systems, IEEE Transaction on AutomaticControl, 53(7), 2008, 1661–1669.
  9. [9] H. Ohlsson and L. Ljung, Segmentation of ARX-models using sum-of-norms regularization, Automatica, 46(6), 2010,1107–1111.
  10. [10] W. Jian-hong, W. Dao-bo, and W. Zhi-sheng, Recursive identification of MISO systems with multiple unknown time delays,Control & Decision, 25(1), 2010, 93–98.
  11. [11] M. Casini, A. Garulli, and A. Vicino, A linear programmingapproach to online set membership parameter estimation forlinear regression models, International Journal of AdaptiveControl and Signal Processing, 31(3), 2017, 360–378.
  12. [12] X. Zhang, M. Kamgarpour, and A. Georghiou, Robust optimalcontrol with adjustable uncertainty sets, Automatica, 75(1),2017, 249–259.

Important Links:

Go Back