NON-LINEAR DYNAMIC MODEL WITH VARYING HIP HEIGHT FOR STABLE WALKING OF BIPED ROBOT

Sreeja Balakrishnan, Shikha Tripathi, and Tekal Subramanyam Babu Sudarshan

References

  1. [1] A. Saudabayev, F. Kungozhin, D. Nurseitov, and H. Atakan Varol, Locomotion strategy selection for a hybrid mobile robot using time of flight depth sensor, Journal of Sensors, 2015, 2015, 1–15, Article ID 425732.
  2. [2] M. Vukobratovic and B. Borovac, Zero-moment point thirty five years of its life, International Journal of Humanoid Robotics, 1, 2004, 157–173.
  3. [3] J. Wu, J. Wang, and Z. You, An overview of dynamic parameter identification of robots, Robotics and Computer Integrated Manufacturing, 26(5), 2010, 414–419.
  4. [4] J. Wu, J. Wang, L. Wang, and T. Li, Dynamics and control of a planar 3-DOF parallel manipulator with actuation redundancy, Mechanism and Machine Theory, 44(4), 2009, 835–849.
  5. [5] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, et al., The 3d linear inverted pendulum mode: a simple modeling for a biped walking pattern generation, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Maui, Hawai, USA, 2001, 239–246.
  6. [6] A. Albert and W. Gerth, Analytic path planning algorithms for bipedal robots without a trunk, International Journal Intelligent Robotics System, 36, 2003, 109–127.
  7. [7] S. Shimmyo, T. Sato, and K. Ohnishi, Biped walking pattern generation by using preview control based on three-mass model, IEEE Transactions on Industrial Electronics, 60, 2013, 5137– 5147.
  8. [8] J.H. Park and E.S. Kim, Foot and body control of biped robots to walk on irregularly protruded uneven surfaces, IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 39, 2009, 289–297.
  9. [9] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, An analytical method on real-time gait planning for a humanoid robot, Proc. 4th IEEE/RAS Int. Conf. on Humanoid Robots, CA, USA, 2004, 640–655.
  10. [10] K. Harada, E. Yoshida, and K. Yokoi, Motion planning for humanoid robots (London: Springer, 2010).
  11. [11] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, et al., Biped walking pattern generation by using preview control of zero-moment point, Proc. IEEE Int. Conf. on Robotics and Automation, 2, 2003, 1620–1626.
  12. [12] N. Phuong, D.W. Kim, H.K. Kim, and S.B. Kim, An optimal control method for biped robot with stable walking gait, Proc. 8th IEEE-RAS International. Conf. on Humanoid Robots, Daejeon, Korea, 2008, 211–218.
  13. [13] H. Haghighi and M. Nekoui, Computed torque controller for an 8 degrees of freedom biped robot based on zero moment point, Proc. 2nd Int. Conf. on Control, Instrumentation and Automation (ICCIA), Shiraz, Iran, 2011, 479–484.
  14. [14] J. Lin, J. Chang, S. Lyu, S.W. Wang, et al., Locomotion control of a biped robot for stair-climbing by fuzzy stabilization tuning approach, Proc. IEEE Int. Conf. on Control Applications (CCA), Yokohama, Japan, 2010, 1590–1595.
  15. [15] D. Kim, S.J. Seo, and G.T. Park, Zero-moment point trajectory modelling of a biped walking robot using an adaptive neuro-fuzzy system, IEE Proceedings – Control Theory and Applications, 152, 2005, 411–426.
  16. [16] P. Vundavilli and D. Pratihar, Balanced gait generations of a two-legged robot on sloping surface, Sadhana, 36, 2011, 525–550.
  17. [17] T. Sato, S. Sakaino, E. Ohashi, and K. Ohnishi, Walking trajectory planning on stairs using virtual slope for biped robots, IEEE Transactions on Industrial Electronics, 58, 2011, 1385–1396.
  18. [18] J. Li and W. Chen, Modeling and control for a biped robot on uneven surfaces, Proc. of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, 2009, 2960–2965.
  19. [19] R. Luo, H.H. Chang, J. Sheng, and P.H. Chang, Walking pattern generation with non-constant body height biped walking robot, Proc. 39th Annual Conf. of the IEEE Industrial Electronics Society (IECON 2013), Vienna, Austria, 2013, 4318–4323.
  20. [20] Y. Liu, P.M. Wensing, J.P. Schmiedeler, and D.E. Orin, Terrain-blind humanoid walking based on a 3-D actuated dualSLIP model, IEEE Robotics and Automation Letters, 1(2), 2016, 1073–1080.
  21. [21] Q.-B. Zhong and F. Chen, Trajectory planning for biped robot walking on uneven terrain – Taking stepping as an example, CAAI Transactions on Intelligence Technology, 1, 2016, 197–209.
  22. [22] J. Yi, Q. Zhu, R. Xiong, and J. Wu, Walking algorithm of humanoid robot on uneven terrain with terrain estimation, International Journal of Advanced Robotic Systems, 13(1), 2016, 1–13.
  23. [23] Y. Wang, J. Ding, and X. Xiao, An adaptive feedforward control method for under-actuated bipedal walking on the compliant ground, International Journal of Robotics and Automation, 32(1), 2017, 63–77.
  24. [24] J. Ding, X. Xiao, and Y. Wang, Preview control with adaptive fuzzy strategy for online biped gait generation and walking control, International Journal of Robotics and Automation, 31(6), 2016, 496–508.
  25. [25] M.A. Hopkins, D.W. Hong, and A. Leonessa, Humanoid locomotion on uneven terrain using the time-varying divergent component of motion, Proc. of the 14th IEEE-RAS International Conf. on Humanoid Robots, Madrid, Spain, 2014, 266–272.
  26. [26] M. Fallon, P. Marion, R. Deits, T. Whelan, et al., Continuous humanoid locomotion over uneven terrain using stereo fusion, Proc. IEEE-RAS 15th Int. Conf. on Humanoid Robots, Seoul, South Korea, 2015, 881–888.
  27. [27] S. Balakrishnan, S. Tripathi, and T.S.B. Sudarshan, Control of a biped robot with flexible foot on an uneven terrain, Proc. 7th IEEE Conf. on Information & Automation for Sustainability, Sri Lanka, 2014, 1–6.
  28. [28] K. Hashimoto, T. Hosobata, Y. Sugahara, Y. Mikuriya, et al., Development of foot system of biped walking robot capable of maintaining four-point contact, Proc. IEEE/RSJ International Conf. on Intelligent Robots and Systems, Edmonton, AB, Canada, 2005, 1361–1366.
  29. [29] K. Hashimoto, Y. Sugahara, A. Ohta, H. Sunazuka, et al., Realization of stable biped walking on public road with new biped foot system adaptable to uneven terrain, Proc. 1st IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, Pisa, Italy, 2006, 226–231.
  30. [30] K. Hashimoto, Y. Sugahara, A. Hayashi, M. Kawase, et al., New foot system adaptable to convex and concave surface, Proc. IEEE Int. Conf. on Robotics and Automation, Rome, Italy, 2007, 1869–1874.
  31. [31] H.J. Kang, K. Hashimoto, H. Kondo, K. Hattori, et al., Realization of biped walking on uneven terrain by new foot mechanism capable of detecting ground surface, Proc. IEEE Conf. on Robotics and Automation, Anchorage, Alaska, 2010, 5167–5172.
  32. [32] C. Nimisha, S. Kochuvila, T.S.B. Sudarshan, and S.R. Nagaraja, Flexible foot system for a biped robot, Int. Conf. on Circuits, Communication, Control and Computing, India, 2014, 135–138.
  33. [33] J. Yoon, H. Nandha, D. Lee, and G. Kim, A novel 4-dof robotic foot mechanism with multi-platforms for humanoid robot, International Joint Conf. SICE-ICASE, Busan, South Korea, 2006, 3500–3504.
  34. [34] J. Yoon, G. Kim, N. Handharu, and A. ¨Ozer, A bio-robotic toe & foot & heel models of a biped robot for more natural walking: Foot mechanism & gait pattern, Biped Robots Armando Carlos Pina Filho, Intech Open, DOI: 10.5772/14959. Available from: https://www.intechopen.com/books/bipedrobots/a-bio-robotic-toe-foot-heel-models-of-a-biped-robotfor-more-natural-walking-foot-mechanism-gait-pat

Important Links:

Go Back