REAL-TIME SHAPE ESTIMATION OF CURVILINEAR FLEXIBLE SURGICAL ROBOTS: METHODS, EXPERIMENTS AND ANALYSIS

Shuang Song, Changchun Zhang, Jiaole Wang, Hongliang Ren, and Max Q.-H. Meng

References

  1. [1] H. Ren, C.M. Lim, J. Wang, W. Liu, S. Song, Z. Li, G. Herbert, H. Yu, Z. Tse, and Z. Tan, Computer assisted transoral surgery with flexible robotic sand navigation technologies: A review of recent progress and research challenges, Critical Reviews in Biomedical Engineering, 41(4–5), 2013, 365–391.
  2. [2] Q. Cheng, P. Liu, P. Lai, S. Xu, Y. Zou, C. Li, and L. Hu, Modelling of soft tissue cutting in virtual surgery simulation: A literature review, International Journal of Robotics and Automation, 32(3), 2017, 243–255.
  3. [3] E.M. Genden, B.W. O’Malley, G.S. Weinstein, C.L. Stucken, J.C. Selber, A. Rinaldo, N.G. Hockstein, E. Ozer, Y. Mallet, R.M. Satava, et al., Transoral robotic surgery: Role in the management of upper aerodigestive tract tumors, Head and Neck, 34(6), 2012, 886–893.
  4. [4] M. Mandapathil, B. Greene, and T. Wilhelm, Transoral surgery using a novel single-port flexible endoscope system, European Archives of Oto-Rhino-Laryngology, 272(9), 2015, 2451–2456.
  5. [5] C. He, S. Wang, H. Sang, J. Li, and L. Zhang, Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery, The International Journal of Medical Robotics and Computer Assisted Surgery, 10(3), 2014, 314–324.
  6. [6] P.E. Dupont, J. Lock, B. Itkowitz, and E. Butler, Design and control of concentric-tube robots, IEEE Transactions on Robotics, 26(2), 2010, 209–225.
  7. [7] P. Dupont, A. Gosline, N. Vasilyev, J. Lock, E. Butler, C. Folk, A. Cohen, R. Chen, G. Schmitz, H. Ren, et al., Concentric tube robots for minimally invasive surgery, Hamlyn Symposium on Medical Robotics, 7, 2012, 8.
  8. [8] C. Bergeles, A.H. Gosline, N.V. Vasilyev, P.J. Codd, P.J. del Nido, and P.E. Dupont, Concentric tube robot design and optimization based on task and anatomical constraints, IEEE Transactions on Robotics, 31(1), 2015, 67–84.
  9. [9] J. Burgner, D.C. Rucker, H.B. Gilbert, P.J. Swaney, P.T. Russell, K.D. Weaver, and R.J. Webster, A telerobotic system for transnasal surgery, IEEE/ASME Transactions on Mechatronics, 19(3), 2014, 996–1006.
  10. [10] K. Olds, A.T. Hillel, E. Cha, M. Curry, L.M. Akst, R.H. Taylor, and J.D. Richmon, Robotic endolaryngeal flexible (robo-ELF) scope: A preclinical feasibility study, The Laryngoscope, 121(11), 2011, 2371–2374.
  11. [11] K. Olds, A. Hillel, J. Kriss, A. Nair, H. Kim, E. Cha, M. Curry, L. Akst, R. Yung, J. Richmon, et al., A robotic assistant for trans-oral surgery: The robotic endo-laryngeal flexible (robo-ELF) scope, Journal of Robotic Surgery, 6(1), 2012, 13–18.
  12. [12] T. Ota, A. Degani, D. Schwartzman, B. Zubiate, J. McGarvey, H. Choset, M. Zenati, et al., A novel highly articulated robotic surgical system for epicardial ablation, Engineering in Medicine and Biology Society, 2008 (EMBS 2008). 30th Annual International Conf. of the IEEE, IEEE, Vancouver, BC, Canada, 2008, 250–253.
  13. [13] A. Degani, H. Choset, B. Zubiate, T. Ota, and M. Zenati, Highly articulated robotic probe for minimally invasive surgery, Engineering in Medicine and Biology Society, 2008 (EMBS 2008). 30th Annual International Conf. of the IEEE, IEEE, Vancouver, BC, Canada, 2008, 3273–3276.
  14. [14] T. Ota, A. Degani, D. Schwartzman, B. Zubiate, J. McGarvey, H. Choset, and M.A. Zenati, A highly articulated robotic surgical system for minimally invasive surgery, The Annals of Thoracic Surgery, 87(4), 2009, 1253–1256.
  15. [15] P.J. Johnson, C.M.R. Serrano, M. Castro, R. Kuenzler, H. Choset, S. Tully, and U. Duvvuri, Demonstration of transoral surgery in cadaveric specimens with the medrobotics ex system, The Laryngoscope, 123(5), 2013, 1168–1172.
  16. [16] C.M. Rivera-Serrano, P. Johnson, B. Zubiate, R. Kuenzler, H. Choset, M. Zenati, S. Tully, and U. Duvvuri, A transoral highly flexible robot, The Laryngoscope, 122(5), 2012, 1067–1071.
  17. [17] R.J. Webster and B.A. Jones, Design and kinematic modelling of constant curvature continuum robots: A review, The International Journal of Robotics Research, 29(13), 2010, 1661–1683.
  18. [18] R.J. Roesthuis, M. Abayazid, and S. Misra, Mechanics-based model for predicting in-plane needle deflection with multiple 566 bends, 2012 4th IEEE RAS & EMBS International Conf. on Biomedical Robotics and Biomechatronics (BioRob), IEEE, Rome, Italy, 2012, 69–74.
  19. [19] K. Xu and N. Simaan, Analytic formulation for kinematics, statics, and shape restoration of multi-backbone continuum robots via elliptic integrals, Journal of Mechanisms and Robotics, 2(1), 2010, 011006.
  20. [20] D.C. Rucker, R.J. Webster, G.S. Chirikjian, and N.J. Cowan, Equilibrium conformations of concentric-tube continuum robots, The International Journal of Robotics Research, 29(10), 2010, 1263–1280.
  21. [21] D.C. Rucker and R.J. Webster, Statics and dynamics of continuum robots with general tendon routing and external loading, IEEE Transactions on Robotics, 27(6), 2011, 1033–1044.
  22. [22] Z. Li, R. Du, H. Yu, and H. Ren, Statics modeling of an underactuated wire-driven robot arm, IEEE International Conf. on Biomedical Robotics and Biomechatronics (BioRob), IEEE, Sao Paulo, Brazil, 2014, 326–331.
  23. [23] E.M. Boctor, M.A. Choti, E.C. Burdette, and R.J. Webster Iii, Three-dimensional ultrasound-guided robotic needle placement: An experimental evaluation, The International Journal of Medical Robotics and Computer Assisted Surgery, 4(2), 2008, 180–191.
  24. [24] H. Ren and P.E. Dupont, Tubular structure enhancement for surgical instrument detection in 3d ultrasound, EMBC’11, International Conf. of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 2011, 7203–7206. doi:10.1109/ IEMBS.2011.6091820.
  25. [25] Y.-L. Park, S. Elayaperumal, B. Daniel, S.C. Ryu, M. Shin, J. Savall, R.J. Black, B. Moslehi, and M.R. Cutkosky, Real-time estimation of 3D needle shape and deflection for MRI-guided interventions, IEEE/ASME Transactions on Mechatronics, 15(6), 2010, 906–915.
  26. [26] A. Vandini, A. Salerno, C.J. Payne, and G.-Z. Yang, Visionbased motion control of a flexible robot for surgical applications, 2014 IEEE International Conf. on Robotics and Automation (ICRA), IEEE, Hong Kong, China, 2014, 6205–6211.
  27. [27] D.B. Camarillo, K.E. Loewke, C.R. Carlson, and J.K. Salisbury, Vision based 3-D shape sensing of flexible manipulators, IEEE International Conf. on Robotics and Automation, 2008 (ICRA 2008)., IEEE, Pasadena, CA, USA, 2008, 2940–2947.
  28. [28] I. Payo, V. Feliu, and O.D. Cortazar, Fibre Bragg grating (FBG) sensor system for highly flexible single-link robots, Sensors and Actuators A: Physical, 150(1), 2009, 24–39.
  29. [29] S.C. Ryu, and P.E. Dupont, FBG-based shape sensing tubes for continuum robots, 2014 IEEE International Conf. on Robotics and Automation (ICRA), IEEE, Hong Kong, China, 2014, 3531–3537.
  30. [30] N.J. van de Berg, J. Dankelman, and J.J. van den Dobbelsteen, Design of an actively controlled steerable needle with tendon actuation and FBG-based shape sensing, Medical Engineering & Physics, 37(6), 2015, 617–622.
  31. [31] A. Bajo and N. Simaan, Kinematics-based detection and localization of contacts along multisegment continuum robots, IEEE Transactions on Robotics, 28(2), 2012, 291–302.
  32. [32] Y. Shapiro, G. Kosa, and A. Wolf, Shape tracking of planar hyper-flexible beams via embedded PVDF deflection sensors, IEEE/ASME Transactions on Mechatronics, 19(4), 2014, 1260–1267.
  33. [33] S. Song, Z. Li, H. Yu, and H. Ren, Electromagnetic positioning for tip tracking and shape sensing of flexible robots, IEEE Sensors Journal, 15(8), 2015, 4565–4575.
  34. [34] S. Song, Z. Li, H. Yu, and H. Ren, Shape reconstruction for wire-driven flexible robots based on Bézier curve and electromagnetic positioning, Mechatronics, 29, 2015, 28–35.
  35. [35] S. Song, Z. Li, Q.-H. Meng, H. Yu, and H. Ren, Real-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic Bézier curves, IEEE Sensors Journal, 15(11), 2015, 6326–6334.
  36. [36] A.M. Franz, T. Haidegger, W. Birkfellner, K. Cleary, T.M. Peters, and L. Maierhein, Electromagnetic tracking in medicine: A review of technology, validation, and applications, IEEE Transactions on Medical Imaging, 33(8), 2014, 1702–1725.
  37. [37] Q. Huang, Y. Huang, W. Hu, and X. Li, Bezier interpolation for 3D freehand ultrasound systems, IEEE Transactions on Human-Machine Systems, 45(3), 2015, 385–392.
  38. [38] L. Wu, S. Song, K. Wu, C.M. Lim, and H. Ren, Development of a compact continuum tubular robotic system for nasopharyngeal biopsy, Medical & Biological Engineering & Computing, 55(3), 2017, 403–417.
  39. [39] H. Sadjadi, K. Hashtrudi-Zaad, and G. Fichtinger, Needle deflection estimation: prostate brachytherapy phantom experiments, International Journal of Computer Assisted Radiology and Surgery, 9(6), 2014, 921–929.
  40. [40] M. Wagner, S. Schafer, C. Strother, and C. Mistretta, 4D interventional device reconstruction from biplane fluoroscopy, Medical Physics, 43(3), 2016, 1324–1334.
  41. [41] S. Song, X. Qiu, J. Wang, and M.Q.H. Meng, Design and optimization strategy of sensor array layout for magnetic localization system, IEEE Sensors Journal, 17(6), 2017, 1849–1857.
  42. [42] C. Zhang, Y. Lu, X. Qiu, S. Song, L. Liu, and M. Meng, Preliminary study on magnetic tracking based navigation for wire-driven flexible robot, 2017 IEEE/RSJ International Conf. on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2017, 2517–2523.

Important Links:

Go Back