Tao Yu, Zhao-Wen Zhang, Wen-Bin Zhao, Tong-Rang Fan, and Jilong Wang


  1. [1] D. Gruhl, R. Guha, D. Liben-Nowell, et al., Information diffusion through blogspace, Proceedings of the 13th International Conference on World Wide Web. ACM, 2004, 491–501.
  2. [2] D. Liginlal and L. Khansa, Information contagion: An empirical study of the spread of news on Digg and Twitter social networks, Eprint Arxiv, 52, 2010,166–176.
  3. [3] S. Yan, S. Tang, S. Pei, et al., The spreading of opposite opinions on online social networks with authoritative nodes, Physica A: Statistical Mechanics and its Applications, 392(17), 2013, 3846–3855.
  4. [4] Z.-Q. Zhu, C.-J. Liu, J.-L. Wu, J. Xu, and B. Liu, The influence of human heterogeneity to information spreading, Journal of Statistical Physics, 154(6), 2014, 1569–1577.
  5. [5] P. Cui, M. Tang, and Z.X. Wu, Message spreading in networks with stickiness and persistence: Large clustering does not always facilitate large-scale diffusion, Scientific Reports, 4, 2014.
  6. [6] P. Shu, Effects of memory on information spreading in complex networks, Computational Science and Engineering (CSE), 2014 IEEE 17th International Conf. on. Computational Science and Engineering, Chengdu, China, 2015, 554–556.
  7. [7] Y. Zhang and J. Xu, A rumor spreading model considering the cumulative effects of memory, Discrete Dynamics in Nature and Society, 2015, 2015(204395), 1–11.
  8. [8] S. Staab, P. Domingos, P. Mike, et al., Social networks applied, IEEE Intelligent Systems, 20(1), 2005, 80–93.
  9. [9] I. Kanovsky and O. Yaari, Viral opinion spreading model in social networks, Social Computing (SocialCom), 2013 International Conf. on. IEEE, 2013, 971–974.
  10. [10] J. Huang, C. Li, W.Q. Wang, et al., Temporal scaling in information propagation, Scientific Reports, 2014, 4(5334), 1–6.
  11. [11] Z.J. Zhang, G.Q. Mao, B.D.O. Anderson, On the information propagation in mobile ad-hoc networks using epidemic routing, Proc. of the 54th Annual IEEE Global Telecommunications Conf.: “Energizing Global Communications , GLOBECOM 2011, New York, Institute of Electrical and Electronics Engineers Inc., 2011.
  12. [12] J. Waters and M.G. Ceruti, Modeling and simulation of information flow: A study of info dynamic quantities, Proc. of the 15th International Command and Control Research and Technology Symposium, San Diego, Space and Naval Warfare Systems Center Pacific San Diego Ca, 2010, 117–131.
  13. [13] C.N. Lin, K.L. Hsieh, J. Roan, et al., The application of structural holes theory to supply chain network information flow analysis, Information Technology Journal, 10(1), 2011, 146–151.
  14. [14] G. Briscoe and A. Marinos, Digital ecosystems in the clouds: Towards community cloud computing, IEEE Digital Ecosystems and Technologies, 12(7), 2009, 103–108.
  15. [15] H. Zhijie, H. Liusheng, W. Ruchuan, et al., A location-based routing algorithm combined with the topology control for wireless sensor network, Journal of Computer Research and Development, 47(z2), 2010, 128–132.
  16. [16] R. K. Pon, A.F. Cardenas, D. J. Buttler, et al., Measuring the interestingness of articles in a limited user environment, Information Processing & Management, 47(1), 2011, 97–116.
  17. [17] Q. Li, J. Wang, Y.P. Chen, et al., User comments for news recommendation in forum-based social media, Information Sciences, 180(24), 2010, 4929–4939.
  18. [18] D. Lu and Q. Li, Exploiting semantic hierarchies for Flickr group, Active Media Technology, 6335, 2010, 74–85.
  19. [19] R.A. Negoescu and D. Gatica Perez, Modeling Flickr communities through probabilistic topic-based analysis, IEEE Transactions on Multimedia, 12(5), 2010, 399–416.
  20. [20] L. Jian-Guo, R. Zhuo-Ming, G. Qiang, W. Bing-Hong, Node importance ranking of complex networks, Acta Physica Sinica, 62(17), 2013, 1–10.
  21. [21] R. Zhuo-Ming, S. Feng, L. Jian-Guo, et al., Node importance measurement based on the degree and clustering coefficient information, Acta Physica Sinica, 62(12), 2013, 1–5.
  22. [22] R. Poulin, M.C. Boily, and B.R. Masse, Dynamical systems to define centrality in social networks, Social Networks, 22(3), 2000, 187–220.
  23. [23] G. Sabidussi, The centrality index of a graph, Psychometrika, 31(4), 1966, 581–603.
  24. [24] J. Zhang, X.K. Xu, P. Li, et al., Node importance for dynamical process on networks: A multiscale characterization, Chaos: An Interdisciplinary Journal of Nonlinear Science, 21(1), 2011, 016107.
  25. [25] L.C. Freeman, A set of measures of centrality based on betweenness, Sociometry, 40(1), 1977, 35–41.
  26. [26] Z. Wenbin and Z. Zhengxu, Research on engineering software data formats conversion network, Journal of Software, 7(11), 2012, 2606–2613.
  27. [27] L. Lu, J. Geng, Q. Gao, Industrial clusters trading network based on heterogeneity, Complex Systems and Complexity Science, 11(2), 2014, 44–51.
  28. [28] J. Yang, J. Zeng, and J. Zhang, Structural heterogeneity of open-source software communities based on complex networks, Journal of South China University of Technology, 41(12), 2013, 136–144.
  29. [29] M.A. Aydin, A.H. Zaim, and K.G. Ceylan, A hybrid intrusion detection system design for computer network security, Computers and Electrical Engineering, 35, 2009, 517–526.

Important Links:

Go Back