FUDP: AN SDN-BASED MECHANISM FOR CONTROLLING UDP FLOWS

Hui Hu, Bo Liu, Chao Hu, Ming Chen, Guang Cheng, and Changyou Xing

References

  1. [1] S. Floyd and K. Fall, Promoting the use of end-to-end congestion control in the Internet, IEEE/ACM Transactions on Networking (ToN), 7(4), 1999, 458–472.
  2. [2] D.J. Lee, B.E. Carpenter, and N. Brownlee, Observations of UDP to TCP ratio and port numbers. Internet Monitoring and Protection (ICIMP), 2010 Fifth International Conf. on IEEE, Barcelona, Spain, 2010, 99–104.
  3. [3] CERNET, http://iptas.edu.cn, 2014 [EB/OL].
  4. [4] N. McKeown, Software-defined networking, INFOCOM Keynote Talk, 17(2), 2009, 30–32.
  5. [5] B. Liu, M. Chen, B. Xu, H. Hu, C. Hu, Q.Y. Zuo, and C.Y. Xing, An OpenFlow-based performance-oriented multipath forwarding scheme in datacenters, Frontiers of Information Technology & Electronic Engineering, 17(7), 2016, 647–660.
  6. [6] S. Jain, A. Kumar, S. Mandal, et al., B4: Experience with a globally-deployed software defined WAN, ACM SIGCOMM Computer Communication Review, 43(4), 2013, 3–14.
  7. [7] N. McKeown, T. Anderson, H. Balakrishnan, et al., OpenFlow: Enabling innovation in campus networks, ACM SIGCOMM Computer Communication Review, 38(2), 2008, 69–74.
  8. [8] R. Adams, Active queue management: A survey, IEEE Communications Surveys & Tutorials, 15(3), 2013, 1425–1476.
  9. [9] A. Kuzmanovic, The power of explicit congestion notification, ACM SIGCOMM Computer Communication Review, 35(4), 2005, 61–72.
  10. [10] N. Dukkipati, G. Gibb, N. McKeown, et al., Building a RCP (rate control protocol) test network, Hot Interconnects, Stanford, CA, USA, 2007, 15.
  11. [11] L.L.H. Andrew, S.H. Low, and B.P. Wydrowski, Understanding XCP: Equilibrium and fairness, IEEE/ACM Transactions on Networking (TON), 17(6), 2009, 1697–1710.
  12. [12] S. Floyd, E. Kohler, and J. Padhye, Profile for datagram congestion control protocol (DCCP) congestion control ID 3: TCP-friendly rate control (TFRC), 2006.
  13. [13] D.X. Wei, C. Jin, S.H. Low, et al., FAST TCP: Motivation, architecture, algorithms, performance, IEEE/ACM Transactions on Networking, 14(6), 2006, 1246–1259.
  14. [14] T. Tielert, D. Jiang, Q. Chen, et al., Design methodology and evaluation of rate adaptation based congestion control for vehicle safety communications, Vehicular Networking Conf. (VNC), 2011 IEEE, IEEE, Amsterdam, Netherlands, 2011, 116–123.
  15. [15] P.X. Liu, M.Q.H. Meng, P.R. Liu, et al., An end-to-end transmission architecture for the remote control of robots over IP networks, IEEE/ASME Transactions on Mechatronics, 10(5), 2005, 560–570.
  16. [16] L. Budzisz, R. Stanojevic, R. Shorten, et al., A strategy for fair coexistence of loss and delay-based congestion control algorithms, IEEE Communications Letters, 2009, 13(7), 555–557.
  17. [17] I. Rhee and L. Xu, Limitations of equation-based congestion control, ACM SIGCOMM Computer Communication Review. ACM, 35(4), 2005, 49–60.
  18. [18] I. Rhee and L. Xu, Limitations of equation-based congestion control, IEEE/ACM Transactions on Networking (TON), 15(4), 2007, 852–865.
  19. [19] D.X. Wei, C. Jin, S.H. Low, et al., FAST TCP: Motivation, architecture, algorithms, performance, IEEE/ACM Transactions on Networking (ToN), 14(6), 2006, 1246–1259.
  20. [20] S. Ha, I. Rhee, and L. Xu, CUBIC: A new TCP-friendly high-speed TCP variant, ACM SIGOPS Operating Systems Review, 42(5), 2008, 64–74.
  21. [21] S. Liu, T. Ba¸sar, and R. Srikant, TCP-Illinois: A lossand delay-based congestion control algorithm for high-speed networks, Performance Evaluation, 65(6), 2008, 417–440.
  22. [22] M. Dong, Q. Li, D. Zarchy, et al., PCC: Re-architecting congestion control for consistent high performance, 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), Oakland, CA, 2015, 395–408.
  23. [23] B. Claise, Cisco systems NetFlow services export version 9, 2004.
  24. [24] M.S. Kim, T. Kim, Y.J. Shin, et al., A wavelet-based approach to detect shared congestion, IEEE/ACM Transactions on Networking, 16(4), 2008, 763–776.
  25. [25] OpenFlow switch specification, version 1.0.0. [Online]. Available: https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/openflow/openflowspec-v1.0.0.pdf
  26. [26] B. Radunovi´c and J.Y.L. Boudec, A unified framework for max-min and min-max fairness with applications, IEEE/ACM Transactions on Networking (TON), 15(5), 2007, 1073–1083.
  27. [27] M.S. Seddiki, M. Shahbaz, S. Donovan, et al., FlowQoS: QoS for the rest of us, Proc. Third Workshop on Hot Topics in Software Defined Networking, ACM, 2014, 207–208.
  28. [28] Pox-eel. [Online]. Available: https://github.com/noxrepo/pox/
  29. [29] Iperf. [Online]. Available: https://iperf.fr/
  30. [30] A.B. Sediq, R.H. Gohary, R. Schoenen, et al., Optimal tradeoff between sum-rate efficiency and Jain’s fairness index in resource allocation, IEEE Transactions on Wireless Communications, 12(7), 2013, 3496–3509.
  31. [31] L.L. Peterson and B.S. Davie, Computer networks: A systems approach, (Elsevier, 2007).

Important Links:

Go Back