ENERGY-BALANCING, LOCAL DATA CORRELATION-AWARE CLUSTERING ALGORITHM FOR WIRELESS SENSOR NETWORKS

Zefeng Lv, Fan Wang, Xiaopeng Hu, and Yan Yang

References

  1. [1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: A survey, Computer Networks, 300– 301(4), 2013, 490–493.
  2. [2] J. Yick, B. Mukherjee, and D. Ghosal, Wireless sensor network survey, Computer Networks, 52(12), 2008, 2292–2330.
  3. [3] W. Cui, X. Meng, B. Yang, et al. An efficient lossy link localization approach for wireless sensor networks, Frontiers of Information Technology & Electronic Engineering, 18(5), 2017, 689–707. http://dx.doi.org/10.1631/FITEE.1601247
  4. [4] S. Pattem, B, Krishnamachari, and R. Govindan, The impact of spatial correlation on routing with compression in wireless sensor networks, ACM Transactions on Sensor Networks (TOSN), 4(4), 2008, 1–33.
  5. [5] M.C. Vuran, ¨O.B. Akan, and I.F. Akyildiz, Spatio-temporal correlation: Theory and applications for wireless sensor networks, Computer Networks, 45(3), 2004, 245–259.
  6. [6] H. C¸am, S. ¨Ozdemir, P. Nair, D. Muthuavinashiappan, and H.O. Sanli, Energy-efficient secure pattern based data aggregation for wireless sensor networks, Computer Communications, 29(4), 2006, 446–455.
  7. [7] Y. Gao, K. Wu, and F. Li, Analysis on the redundancy of wireless sensor networks, Proc. 2nd ACM International Conf. on Wireless Sensor Networks and Applications, San Diego, CA, USA, 2003, 108–114.
  8. [8] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy-efficient communication protocol for wireless microsensor networks, Proc. the 33rd Annual Hawaii International Conference on System Sciences, 2, 2000, 10–19.
  9. [9] O. Younis and S. Fahmy, HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks, IEEE Transactions on Mobile Computing, 3(4), 2004, 366–379.
  10. [10] G. Chen, L.I. Chengfa, and Y.E. Mao, EECS: An energyefficient clustering scheme in wireless sensor networks, Ad Hoc & Sensor Wireless Networks, 3(2–3), 2007, 99–119.
  11. [11] A.G. Karegowda, B.G. Premsudha, and G. Devika, A pragmatic study of evolutionary techniques based energy efficient hierarchical routing protocols – LEACH and PEGASIS, International Journal of Applied Engineering Research, 10(17), 2015, 38274–38285.
  12. [12] H.W. Ferng, R. Tendean, and A. Kurniawan, Energy-efficient routing protocol for wireless sensor networks with static clustering and dynamic structure, Wireless Personal Communications, 65(2), 2012, 347–367.
  13. [13] A. Dabirmoghaddam, M. Ghaderi, and C. Williamson, Clusterbased correlated data gathering in wireless sensor networks, International Symposium on IEEE Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), Miami Beach, FL, USA, 2010, 163–171.
  14. [14] B.K. Debroy, M.S. Sadi, and M.A. Imran, An efficient approach to select cluster head in wireless sensor networks, Journal of Communications, 6(7), 2011, 529–539.
  15. [15] L.L. Yang and L. Tao, Research on the low-energy minimum average distance algorithm for the distribution of cluster-head nodes in wireless sensor networks, Journal of Convergence Information Technology, 7(16), 2012, 208–213.
  16. [16] F. Yuan, Y. Zhan, and Y. Wang, Data density correlation degree clustering method for data aggregation in WSN, IEEE Sensors Journal, 14(4), 2014, 1089–1098.
  17. [17] D. Slepian and J.K. Wolf, Noiseless coding of correlated information sources, IEEE Transactions on Information Theory, 19(4), 1973, 471–480.
  18. [18] W.B. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan, An application-specific protocol architecture for wireless microsensor networks, IEEE Transactions on Wireless Communications, 1(4), 2002, 660–670.
  19. [19] T.M. Cover, A proof of the data compression theorem of Slepian and Wolf for ergodic sources, IEEE Transactions on Information Theory, 21(2), 1975, 226–228.
  20. [20] T.M. Cover and J A. Thomas, Elements of information theory, (Hoboken, NJ, USA: John Wiley & Sons, 2006), 21–22.
  21. [21] Institute for Nuclear Theory, Seattle, WA, USA, 2004, Intel Lab Data [Online]. Available: http://db.csail.mit.edu/labdata/ labdata.html.

Important Links:

Go Back