COALITIONAL SKILL GAMES FOR SELF-INTERESTED ROBOTS WITH SVO

Ming-Lan Fu, Hao Wang, and Bao-Fu Fang

References

  1. [1] C. Yang, Z. Li, and J. Li, Trajectory planning and optimizedadaptive control for a class of wheeled inverted pendulumvehicle models, IEEE Transactions on Cybernetics, 43(1),2013, 24–36.
  2. [2] L. Sabattini, C. Secchi, M. Cocetti, A. Levratti, et al., Im-plementation of coordinated complex dynamic behaviors inmultirobot systems, IEEE Transactions on Robotics, 31(4),2015, 1018–1032.
  3. [3] S. Nardi, C. Della Santina, D. Meucci, and L. Pallottino,Coordination of unmanned marine vehicles for asymmetricthreats protection, in OCEANS (IEEE, 2015), 1–7.
  4. [4] C. Wang, F. Zhang, and D. Schaefer, Dynamic modeling of anautonomous underwater vehicle, Journal of Marine Science &Technology, 20(2), 2015, 199–212.
  5. [5] S. Nurmaini, B. To, and A.R. Thoharsin, Intelligent mobileolfaction of swarm robots, IAES International Journal ofRobotics and Automation, 2(4), 2013, 189–198.
  6. [6] W. Wei and K. Curran, Indoor robot localisation with activeRFID, IAES International Journal of Robotics and Automa-tion, 1(3), 2012, 137–144.
  7. [7] Y. Bachrach and J.S. Rosenschein, Coalitional skill games,Proc. 7th International Joint Conf. on Autonomous Agentsand Multiagent Systems, Estoril, Portugal, 2008, 1023–1030.
  8. [8] Y. Bachrach, D.C. Parkes, and J.S. Rosenschein, Comput-ing cooperative solution concepts in coalitional skill games,Artificial Intelligence, 204(9), 2013, 1–21.
  9. [9] Y. Bachrach, R. Meir, K. Jung, and P. Kohli, Coalitionalstructure generation in skill games, The National Conf. onArtificial Intelligence, Atlanta, Georgia, USA, 2010, 703–708.
  10. [10] T. Sandholm, K. Larson, M. Andersson, and O. Shehory,Coalition structure generation with worst case guarantees,Artificial Intelligence, 111(1), 1999, 209–238.
  11. [11] L. Vig and J.A. Adams, Coalition formation: From softwareagents to robots, Journal of Intelligent and Robotic Systems,50(1), 2007, 85–118.
  12. [12] J.A. Adams, Coalition formation for task allocation: Theoryand algorithms, Autonomous Agents and Multi-Agent Systems,22(2), 2011, 225–248.
  13. [13] R. Zlot and A. Stentz, Complex task allocation for multiplerobots, Proc. 2005 IEEE Conf. on Robotics and Automation,Barcelona, Spain, 2005, 1515–1522.
  14. [14] L. Lin and Z. Zheng, Combinatorial bids based multi-robottask allocation method, Proc. 2005 IEEE Conf. On Roboticsand Automation, Barcelona, Spain, 2005, 1145–1150.
  15. [15] L. Vig, and J.A. Adams, Market-based multi-robot coalitionformation, in Distributed Autonomous Robotic Systems, 7(Japan: Springer International Publishing, 2006), 227–236.
  16. [16] A.M. Khamis, A.M. Elmogy, and F.O. Karray, Complex taskallocation in mobile surveillance systems, Journal of Intelligent& Robotic Systems, 64(1), 2011, 33–55.
  17. [17] R. Cui, J. Guo, and B. Gao, Game theory-based negotiation formultiple robots task allocation, Robotica, 31(6), 2013, 923–934.
  18. [18] G. Zlotkin and J.S. Rosenschein, Cooperation and conflictresolution via negotiation among autonomous agents in nonco-operative domains, IEEE Transactions on Systems, Man andCybernetics, 21(6), 1991, 1317–1324.
  19. [19] H. Wang, C.W. Dong, and B.F. Fang, A novel multi pursuers-one evader game based on quantum game theory, InformationTechnology Journal, 12(12), 2013, 2358–2365.
  20. [20] S. Damer and M. Gini, Cooperation without exploitation be-tween self-interested agents, Intelligent Autonomous Systems,12 (Berlin, Heidelberg: Springer International Publishing,2013), 553–562.
  21. [21] B. Swenson, S. Kar, and J. Xavier, A computationally efficientimplementation of fictitious play for large-scale games, SignalProcessing Conference IEEE, 2015, 1043–1047.
  22. [22] R.O. Murphy, K.A. Ackermann, and M. Handgraaf, Measuringsocial value orientation, Judgement and Decision Making, 6(8),2011, 771–781.
  23. [23] Z. Zhang, F. Zhang, L. Huang, B. Yuan, et al., Theoriesand measurement methods of social value orientation relatedto decision making, Advances in Psychological Science, 22(1),2014, 48–56.
  24. [24] L. Vig and J.A. Adams, Multi-robot coalition formation, IEEETransactions on Robotics, 22(4), 2006, 637–649.
  25. [25] M. Elango, S. Nachiappan, and M.K. Tiwari, Balancing taskallocation in multi-robot systems using K-means clustering andauction based mechanisms, Expert Systems with Applications,38(6), 2011, 6486–6491.
  26. [26] Y. Tian and N. Sarkar, Game-based pursuit evasion for non-holonomic wheeled mobile robots subject to wheel slips, Ad-vanced Robotics, 27(14), 2013, 1087–1097.
  27. [27] L.A. Zadeh, Stochastic finite-state systems in control theory,Information Sciences, 251(4), 2013, 1–9.
  28. [28] A. Kawamura and M. Soejima, Simple strategies versus op-timal schedules in multi-agent patrolling, in Algorithms andComplexity, (Berlin: Springer International Publishing, 2015),261–273.
  29. [29] E. Hern´andez, J. Cerro, and A. Barrientos, Game theory mod-els for multi-robot patrolling of infrastructures, InternationalJournal of Advanced Robotic Systems, 10(2), 2013, 463–474.

Important Links:

Go Back