TRACKING CONTROL OF NONHOLONOMIC WHEELED MOBILE ROBOTS ON SLOPES

Liang Ding, Chao Chen, Yuankai Li, Guangjun Liu, Haibo Gao, and Zongquan Deng

References

  1. [1] I. Kolmanovsky and N.H. McClamroch, Developments in nonholonomic control problems, IEEE Control Systems, 15(6), 1995; 20–36.
  2. [2] E. Mohammadpour and M. Naraghi, Robust adaptive tracking and regulation of wheeled mobile robots violating kinematic constraint, International Journal of Robotics & Automation, 25(4), 2010, 323.
  3. [3] C. Samson, Velocity and torque feedback control of a nonholonomic cart, Advanced Robot Control, 162(1), 1991, 125–151.
  4. [4] C.C. De Wit and O.J. Sordalen, Exponential stabilization of mobile robots with nonholonomic constraints, IEEE Transactions on Automatic Control, 37(11), 1992, 1791–1797.
  5. [5] Y. Kanayama, Y. Kimura, F. Miyazaki, et al., A stable tracking control method for an autonomous mobile robot, Robotics and Automation, 1990. Proceedings, 1990 IEEE International Conference on. IEEE, 1990, 384–389.
  6. [6] B. d’Andréa-Novel, G. Campion, and G. Bastin, Control of nonholonomic wheeled mobile robots by state feedback linearization, The International Journal of Robotics Research, 14(6), 1995, 543–559.
  7. [7] W. Dong, W. Huo, S.K. Tso, et al., Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots, IEEE Transactions on Robotics and Automation, 16(6), 2000, 870–874.
  8. [8] S.S. Ge, Z. Wang, and T.H. Lee, Adaptive stabilization of uncertain nonholonomic systems by state and output feedback, Automatica, 39(8), 2003, 1451–1460.
  9. [9] T. Das and I.N. Kar, Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots, IEEE Transactions on Control Systems Technology, 14(3), 2006, 501–510.
  10. [10] P. Morin and C. Samson, Control of nonholonomic mobile robots based on the transverse function approach, IEEE Transactions on Robotics, 25(5), 2009, 1058–1073.
  11. [11] K. Iagnemma and S. Dubowsky, Traction control of wheeled robotic vehicles in rough terrain with application to planetary rovers, The International Journal of Robotics Research, 23(10– 11), 2004, 1029–1040.
  12. [12] G. Ishigami, K. Nagatani, and K. Yoshida, Slope traversal controls for planetary exploration rover on sandy terrain, Journal of Field Robotics, 26(3), 2009, 264–286.
  13. [13] L. Ding, H. Gao, and Z. Deng, et al., Slip-ratio-coordinated control of planetary exploration robots traversing over deformable rough terrain, Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE, 2010, 4958–4963.
  14. [14] L. Ding, H. Gao, Z. Deng, et al., Path-following control of wheeled planetary exploration robots moving on deformable rough terrain, The Scientific World Journal, 2014, 2014.
  15. [15] M.H. Amoozgar, S.H. Sadati, K. Alipour, et al., Trajectory tracking of wheeled mobile robots using a kinematical fuzzy controller, International Journal of Robotics & Automation, 27(1), 2012, 49–59.
  16. [16] M.M. Fateh and A. Arab, Robust control of a wheeled mobile robot by voltage control strategy, Nonlinear Dynamics, 79(1), 2015, 335–348.
  17. [17] J.X. Xu, Z.Q. Guo, and T.H. Lee, Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot, IEEE Transactions on Industrial Electronics, 61(7), 2014, 3671–3681.
  18. [18] M.H. Khooban, Design an intelligent proportional-derivative (PD) feedback linearization control for nonholonomic-wheeled mobile robot, Journal of Intelligent & Fuzzy Systems, 26(4), 2014, 1833–1843.
  19. [19] J. Chen and D.M. Dawson, Monocular camera visual servo control of wheeled mobile robots, International Journal of Robotics and Automation, 26(1), 2011, 26.
  20. [20] Z.P. Jiang and H. Nijmeijer, Tracking control of mobile robots: A case study in backstepping, Automatica, 33(7), 1997, 1393– 1399.
  21. [21] Z.P. Jiang and H. Nijmeijer, A recursive technique for tracking control of nonholonomic systems in chained form, IEEE Transactions on Automatic Control, 44(2), 1999, 265–279.
  22. [22] R. Fierro and F.L. Lewis, Control of a nonholonomic mobile robot using neural networks, IEEE Transactions on Neural Networks, 9(4), 1998, 589–600.
  23. [23] T. Fukao, H. Nakagawa, and N. Adachi, Adaptive tracking control of a nonholonomic mobile robot, IEEE Transactions on Robotics and Automation, 16(5), 2000, 609–615.
  24. [24] A. Zhu and S.X. Yang, Tracking control of a mobile robot with stability analysis, International Journal of Robotics and Automation, 28(4), 2013, 340–348.
  25. [25] J. Bell, Mars exploration, Roving the red planet, Nature, 490(7418), 2012, 34–35.
  26. [26] S.W. Squyres, A.H. Knoll, R.E. Arvidson, et al., Exploration of Victoria crater by the Mars rover Opportunity, Science, 324(5930), 2009, 1058–1061.
  27. [27] C.R. Neal, The Moon 35 years after Apollo: What’s left to learn? Chemie der Erde-Geochemistry, 69(1), 2009, 3–43.
  28. [28] C.F. Olson, L.H. Matthies, J.R. Wright, et al., Visual terrain mapping for Mars exploration. Computer Vision and Image Understanding, 105(1), 2007, 73–85.
  29. [29] C. Ye and J. Borenstein, A novel filter for terrain mapping with laser rangefinders, IEEE Transactions on Robotics, 20(5), 2004, 913–923.
  30. [30] Y. Jeong, Y. Bok, J.S. Kim, et al., Complementation of cameras and lasers for accurate 6d slam: From correspondences to bundle adjustment, Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011, 3581–3588.
  31. [31] H.S. Kang, Y.T. Kim, C.H. Hyun, et al., Generalized extended state observer approach to robust tracking control for wheeled mobile robot with skidding and slipping, International Journal of Advanced Robotic Systems, 10(3), 2013, 155.
  32. [32] M. Yokoyama, Y. Matsuhasi, A. Sano, et al., Slip control of a wheeled mobile robot with a movable auxiliary mass, 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2015, 1008–1013.
  33. [33] G. Ishigami, K. Nagatani, K. Yoshida, Path following control with slip compensation on loose soil for exploration rover, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006, 5552–5557.
  34. [34] H. Gao, Z. Deng, L. Ding, et al., Virtual simulation system with path-following control for lunar rovers moving on rough terrain, Chinese Journal of Mechanical Engineering, 25(39), 2012, 38–46.
  35. [35] L. Ding, Wheel-soil interaction terramechanics for lunar/planetary exploration rovers: Modeling and application, Doctoral Thesis, Harbin Institute of Technology, Harbin, China (in Chinese), 2009.
  36. [36] M. Tarokh, Hybrid intelligent path planning for articulated rovers in rough terrain, Fuzzy Sets and Systems, 159(21), 2008, 2927–2937.
  37. [37] J.K. Liu, Design and Matlab Simulation of Robot Control System. 2012.

Important Links:

Go Back