3D COMPUTATION OF LIGHTNING ELECTROMAGNETIC FIELDS IN THE PRESENCE OF A HORIZONTALLY STRATIFIED GROUND

Kaddour Arzag, Zin-Eddine Azzouz, Yoshihiro Baba, and Boualem Ghemri

References

  1. [1] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Transactions on Antennas and Propagation, AP-14 (3), 1966, 302–307.
  2. [2] R.F. Harrington, Field computation by moment methods (New York: Macmillan, 1968).
  3. [3] M.N.O. Sadiku, A simple introduction to finite element analysis of electromagnetic problems, IEEE Transactions on Education, 32(2), 1989, 85–93.
  4. [4] Y. Baba and V.A. Rakov, Application of the FDTD method to lightning electromagnetic pulse and surge simulation, IEEE Transactions on Electromagnetic Compatibility, 56(6), 2014, 1506–1521.
  5. [5] J.R. Wait, Electromagnetic wave in stratified media (Oxford: IEEE Press, 1996).
  6. [6] F. Delfino, R. Procopio, M. Rossi, A. Shoory, and F. Rachidi, Lightning electromagnetic radiation over a stratified conducting ground: Formulation and numerical evaluation of the electromagnetic fields, Journal of Geophysical Research, 116, 2011, D04101, doi:10.1029/2010JD015077.
  7. [7] A. Shoory, F. Rachidi, F. Delfino, R. Procopio, and M. Rossi, Lightning electromagnetic radiation over a stratified conducting ground: 2. Validity of simplified approaches, Journal of Geophysical Research, 116, 2011, D11115, doi: 1029/2010JD15078.
  8. [8] A. Mimouni, F. Rachidi, and M. Rubinstein, Electromagnetic fields of lightning return stroke in presence of stratified ground, IEEE Transactions on Electromagnetic Compatibility, 56(2), 2014, 413–418.
  9. [9] J. Paknahad, K. Sheshyani, F. Rachidi, and M. Paolino, Lightning electromagnetic fields and their induced currents on buried cables. Part II: The effect of horizontally stratified ground, IEEE Transactions on Compatibility Electromagnetic, 56(5), 2014, 1146–1154.
  10. [10] K. Sheshyekani and J. Paknahad, Lightning electromagnetic fields and their induced voltages on overhead lines: The effect of horizontally stratified ground, IEEE Transactions on Power Delivery, 30(1), 2015, 290–298.
  11. [11] A. Taflove and S.C. Hagness, Computational electrodynamics: The finite-difference time-domain method, 2nd ed. (London: Artech House, 2000).
  12. [12] V.A. Rakov, and A.A. Dulzon, Calculated electromagnetic fields of lightning return stroke, Tekhnichna Elektrodinamika, 1, 1987, 87–89.
  13. [13] C.A. Nucci, G. Diendorfer, M.A. Uman, F. Rachidi, M. Ianoz, and C. Mazzetti, Lightning return stroke current models with specified channel-base current: A review and comparison, Journal of Geophysical Research, 95(D12), 1990, 20395–20408.
  14. [14] R. Thottappillil, J. Schoene, and M.A. Uman, Return stroke transmission line model for stroke speed near and equal that of light, Geophysical Research Letters, 28(18), 2001, 3593–3596.
  15. [15] T. Noda and S. Yokoyama, Thin wire representation in finite difference time domain surge simulation, IEEE Transactions on Power Delivery, 17(3), 2002, 840–847.
  16. [16] Y. Baba and V.A. Rakov, On the transmission line model for lightning return stroke representation, Geophysical Research Letters, 30(24), 2003, 2294. doi:10.1029/2003GL018407.
  17. [17] M.A. Uman, D.K. McLain, and E.P. Krider, The electromagnetic radiation from a finite antenna, American Journal of Physics, 43, 1975, 33–38.
  18. [18] C.T. Teh, H.A. Illias, H. Mokhlis, and A.H.A. Bakar, Investigation on return stroke current amplitude using Heidler and modified transmission line exponential functions, IEEE Int. Power Engineering and Optimization Conf., Langkawi, Malaysia, March 2014, 386–389.

Important Links:

Go Back