A LOAD-BALANCED ALGORITHM FOR MULTI-CONTROLLER PLACEMENT IN SOFTWARE-DEFINED NETWORK, 72-81.

Qing Wang, Lirong Gao, Yaotong Yang, Jianjun Zhao, Tongdong Dou, and Haoyu Fang

References

  1. [1] Fundation, Open Networking, Software-defined networking:The new norm for networks, ONF White Paper, 2–6, 2012.
  2. [2] T. Nadeau and K. Gray, SDN: Software Defined Networks,O’Reilly Media, September 2013.
  3. [3] N. McKeown, T. Anderson, H. Balakrishnan, et al., Openflow:Enabling innovation in campus networks, ACM SIGCOMMComputer Communication Review, 38(2), 2008, 69–74.
  4. [4] Openflow website, 2016 [Online],https://www.opennetworking.org/sdn-resources/onf-specifications/openflow.
  5. [5] B. Heller, R. Sherwood, and N. McKeown, The controllerplacement problem, Proceedings of the First Workshop on HotTopics in Software Defined Networks, ACM, New York, USA,2012, 7–12.
  6. [6] G. Wang, Y. Zhao, J. Huang, Q. Duan, and J. Li, A K-means-based network partition algorithm for controller placement insoftware defined network, 2016 IEEE International Conferenceon Communications (ICC), Kuala Lumpur, 2016, 1–6.
  7. [7] J. Kennedy and R. Eberhart, Particle swarm optimization,Proceedings of IEEE International Conference on Neural Net-works, vol. 4, Perth, WA, 1995, 1942–1948.
  8. [8] S. Liu, H. Wang, S. Yi, and F. Zhu, NCPSO: A solution ofthe controller placement problem in software defined networks,Proceedings of the ICA3PP Conference Part III, Zhangjiajie,China, 2015, 213–225.
  9. [9] T.Y. Cheng, M. Wang, and X. Jia, QoS-guaranteed controllerplacement in SDN, IEEE Global Communications Conference(GLOBECOM), San Diego, CA, 2015, 1–6.
  10. [10] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu, The SDN controllerplacement problem for WAN, 2014 IEEE/CIC InternationalConference on Communications in China (ICCC), Shanghai,2014, 220–224.
  11. [11] J.A. Hartigan and M.A. Wong, Algorithm AS136: A k-meansclustering algorithm, Applied Statistics, 28, 1979, 100–108.
  12. [12] L. Kaufman and P.J. Rousseeuw, Clustering by Means ofMedoids, Statistical Data Analysis Based on The L1-Norm andRelated Methods, in red. Y. Dodge (Amsterdam, NorthHolland:Elsevier, 1987), 405–416.
  13. [13] R. Ladner, On the structure of polynomial time reducibility,Journal of the ACM (JACM), 22(1), 1975, 155–171.
  14. [14] C. Hillermeier, Nonlinear multiobjective optimization: A gen-eralized homotopy approach, Vol. 135, (Springer Science &Business Media, 2001).
  15. [15] D. Bertsimas and J. Tsitsiklis, Simulated annealing, StatisticalScience, 8(1), 1993, 10–15.
  16. [16] C.E. Leiserson and T.B. Schardl, A work-efficient parallelbreadth-first search algorithm (or how to cope with the non-determinism of reducers), Proceedings of the ACM Symposiumon Parallelism in Algorithms and Architectures, ACM, NewYork, USA, 2010, 303–314.
  17. [17] Internet2 Layer 2 services, 2007 [Online], https://www.internet2.edu/products-services/advanced-networking/layer-2-services/

Important Links:

Go Back