MPPT OF PHOTOVOLTAIC SYSTEM VARIABLE ACCELERATION DISTURBANCE METHOD BASED ON GENETIC ALGORITHM

Shengqing Li, Wenfeng Wu, and Dinghuan Ma

References

  1. [1] R. Ni, D. Zheng F. Xu, and B. Cui, Simulation study on PVarray output characteristics, Power Electronics, 47(3), 2013,33–35.
  2. [2] Y. Yang, B. Zhu, F. Zhao, et al., An adaptive and variablestep MPPT method based on current predictive controllers,Proceedings of the CSEE, 34(6), 2014, 855–862.
  3. [3] B. Wan, S. Luo, and L. Kang, PV MPPT based on duty cycleperturbation control and its simulation, Renewable EnergyResources, 31(10), 2013, 5–9.
  4. [4] Y. Chen, J. Zhou, J. Li, and L. Zhou, Application of gradientvariable step size MPPT algorithm in photovoltaic system,Proceedings of the CSEE, 39(17), 2014, 3156–3161.
  5. [5] J. Gao and G. Li, Research on MPPT algorithm in combinationwith open circuit voltage and short circuit current, PowerSystem Protection and Control, 43(24), 2015, 96–101.
  6. [6] A.R. Reisi, M.H. Moradi, and S. Jamasb, Classification andcomparison of maximum power point tracking techniques forphotovoltaic system: A review, Renewable and SustainableEnergy Reviews, 19, 2013, 433–443.
  7. [7] Y. Yang and K. Zhou, Photovoltaic cell modeling and MPPTcontroller strategies, Transactions of China ElectrotechnicalSociety, 26(9), 2011, 2229–2234.
  8. [8] H. Hang, W. Yang, and W. Zhu, Analysis and improvementof MPPT disturbance observer method for PV system, PowerSystem Protection and Control, 42(9), 2014, 110–114.
  9. [9] K.L. Lian, J.H. Jhang, and I.S. Tian, A maximum power pointtracking method based on perturb-and-observe combined withparticle swarm optimization, IEEE Journal of Photovoltaics,2(4), 2014, 626–633.
  10. [10] L. Shanshou, Z. Xing, Z. Hongkai, et al., Global MPPTmethod based on power closed-loop control and PSO algorithm,Proceedings of the CSEE, 2014, 34(28), 4809–4816.
  11. [11] A.A.S. Mohamed, A. Berzoy, and O.A. Mohammed, Designand hardware implementation of FL-MPPT controller of PVsystems based on GA and small-signal analysis, IEEE Trans-actions on Sustainable Energy, 1(8), 2017, 279–290.
  12. [12] J. Fei and S. Wang, Feedback linearization-based adaptive fuzzysliding mode control of MEMS triaxial gyroscope, InternationalJournal of Robotics & Automation, 28(1), 2013, 72–80.
  13. [13] C.E.G. Cena, M. Artigas, R. Aracil, and R.J. Saltar´en, Optimalanalysis of a teleoperated system with an adaptative controller,International Journal of Robotics & Automation, 26(26), 2011,271–311.
  14. [14] J. Yang and L. Zhu, Research on photovoltaic cell model basedon Matlab/Simulink, Modern Electronics Technique, 34(24),2011, 192–195.
  15. [15] S. Kaitwanidvilai, P. Olranthichachat, and I. Ngamroo, Weightoptimization and structure specified robust H# loop-shapingcontrol of a pneumatic servo system using genetic algorithm,International Journal of Robotics & Automation, 25(3), 2010,229–239.
  16. [16] T. Ababsa, N. Djedl, and Y. Duthen, Genetic programming-based self-reconfiguration planning for metamorphic robot,International Journal of Automation & Computing, 2017, 1–12.
  17. [17] F. Piltan, A. Jalali, and N. Sulaiman, Design of PC-based sliding mode controller and normalized sliding surface slope usingPSO method for robot manipulator, International Journal ofRobotics & Automation, 2(4), 2011, 101–114.
  18. [18] P. Jha, A neural network approach for inverse kinematic ofa SCARA manipulator, International Journal of Robotics &Automation, 3(1), 2014, 31–40.
  19. [19] D. Zhou and Y. Chen, Maximum power point tracking strategybased on modified variable step-size incremental conductancealgorithm, Power System Technology, 39(6) 2015, 1491–1498.
  20. [20] A. Safari and S. Mekhilef, Simulation and hardware unification of incremental conductance MPPT with direct controlmethod using ´Cuk converter, IEEE Transactions on IndustrialElectronics, 58(4), 2011, 1154–1161.
  21. [21] L. He and S. Cheng, MPPT algorithm based on genetic algorithm and perturbation observation method, Modern Electronics Technology, 24(31), 2009, 199–202.
  22. [22] L. Chouksey, P. Akash Pattanaik, and R.K. Saket, Maximumpower point tracking of photovoltaic system using two inputand two output fuzzy system, Lecture Notes in ElectricalEngineering, 326, 2015, 245–253.
  23. [23] T. Radjai, L. Rahmani, S. Mekhiief, et al., Implementationof a modified incremental conductance MPPT algorithm withdirect control based on a fuzzy duty cycle change estimatorusing dSPACE, Solar Energy, 110, 2014, 325–337.
  24. [24] C. Liu, J. Chen, Y. Liu, et al., An asymmetrical fuzzy-logic-control-based MPPT algorithm for photovoltaic systems,Energies, 7(4), 2014, 2177–2193.
  25. [25] R. Rajesh and M. Mabel, Efficiency analysis of a multi-fuzzylogic controller for the determination of operating points in aPV system, Solar Energy, 99, 2014, 77–87.
  26. [26] A.K. Abdelsalam, A.M. Massoud, S. Ahmed, et al., High-performance adaptive perturb and observe MPPT technique forphotovoltaic-based microgrids, IEEE Transactions on PowerElectronics, 26(4), 2011, 1010–1021.
  27. [27] B. Parida, S. Iniyan, and R. Goic, A review of solar photovoltaictechnologies Renewable and Sustainable Energy Reviews, 15(3),2011, 1625–1636.
  28. [28] K. Sundareswaran, V. Vignesh Kumar, and S. Palani, Appli-cation of a combined particle swarm optimization and perturband observe method for MPPT in PV systems under partialshading conditions, Renewable Energy, 75, 2015, 308–317.
  29. [29] H. Rezk and A. Eltamaly, A comprehensive comparison ofdifferent MPPT techniques for photovoltaic systems, SolarEnergy, 112, 2015, 1–11.
  30. [30] Y. Chen, Z. Lai, and R. Liang, A novel auto-scaling variablestep-size MPPT method for a PV system, Solar Energy, 2014,102, 247–256.

Important Links:

Go Back