FEEDFORWARD COMPUTATIONAL MODEL FOR PATTERN RECOGNITION WITH SPIKING NEURONS

Malu Zhang, Hong Qu, Jianping Li, Ammar Belatreche, Xiurui Xie, and Zhi Zeng

References

  1. [1] R. Yan, K.P. Tee, Y. Chua, H. Li, and H. Tang, Gesture recognition based on localist attractor networks with application to robot control, IEEE Computational Intelligence, 7(1), 2012, 64–74.
  2. [2] D. Keysers, F.J. Och, and H. Ney, Maximum entropy and Gaussian models for image object recognition, Joint Pattern Recognition Symposium, vol. 2449, 2002, 498–506.
  3. [3] Y.F. Liu, J.M. Guo, and J.D. Lee, Halftone image classification using LMS algorithm and naive Bayes, IEEE Transactions on Image Processing, 20(10), 2011, 2837–2847.
  4. [4] M. Chi and L. Bruzzone, Semisupervised classification of hyperspectral images by SVMs optimized in the primal, IEEE Transactions on Geoscience and Remote Sensing, 45(6), 2007, 1870–1880.
  5. [5] Q. Yu, H. Tang, K.C. Tan, and H. Li, Rapid feedforward computation by temporal encoding and learning with spiking neurons, IEEE Transactions on Neural Network Learning Systems, 24(10), 2013, 1539–1552.
  6. [6] S. Thorpe, D. Fize, and C. Marlot, Speed of processing in the human visual system, Nature, 381(10), 1996, 520–522.
  7. [7] S.J. Thorpe and M. Fabre-Thorpe, Seeking categories in the brain, Nature, 291(5502), 2011, 260–262.
  8. [8] B. Zhao, R. Ding, S. Chen, B. Linares-Barranco, and H. Tang, Feedforward categorization on AER motion events using cortexlike features in a spiking neural network, IEEE Transactions on Neural Network Learning Systems, 26(9), 2014, 1963–1978.
  9. [9] D.I. Perrett, J.K. Hietanen, M.W. Oram, P.J. Benson, and E.T. Rolls, Organization and functions of cells responsive to faces in the temporal cortex, Philosophical Transactions on Royal Society, 335(1273), 1992, 23–30.
  10. [10] C.P. Hung, G. Kreiman, T. Poggio, and J.J. DiCarlo, Fast readout of object identity from macaque inferior temporal cortex, Science, 310(5749), 2005, 863–866.
  11. [11] H.S. Seung, Learning in spiking neural networks by reinforcement of stochastic synaptic transmission, Neuron, 40(6), 2003, 1063–1073.
  12. [12] M.J. Berry and M. Meister, Refractoriness and neural precision, Journal of Neuroscience, 18(6), 1998, 2200–2211.
  13. [13] V.J. Uzzell and E.J. Chichilnisky, Precision of spike trains in primate retinal ganglion cells, Journal of Neurophysiology, 92(2), 2004, 780–789.
  14. [14] T. Gollisch and M. Meister, Rapid neural coding in the retina with relative spike latencies, Science, 319(5866), 2008, 1108– 1111.
  15. [15] P. Reinagel and R.C. Reid, Temporal coding of visual information in the thalamus, Journal of Neuroscience, 20(14), 2000, 5392–5400.
  16. [16] W. Bair and C. Koch, Temporal precision of spike trains in extra striate cortex of the behaving macaque monkey, Neural Computation, 8(6), 1996, 1185–1202.
  17. [17] X. Xiu et al., Efficient training of supervised spiking neural network via accurate synaptic-efficiency adjustment method, IEEE Transactions on Neural Networks and Learning Systems, 28(6), 2016.
  18. [18] M. Zhang, H. Qu, A. Belatreche, and X. Xie, EMPD: An efficient membrane potential driven supervised learning algorithm for spiking neurons, IEEE Transactions on Cognitive and Developmental Systems, 2017. DOI: 10.1109/TCDS.2017.2651943.
  19. [19] A. Bermak, VLSI implementation of a neuromorphic spiking pixel and investigation of various focal-plane excitation schemes, International Journal of Robotics and Automation, 19(4), 2004, 197–205.
  20. [20] M. Zhang, H. Qu, X. Xie, et al., Supervised learning in spiking neural networks with noise-threshold, Neurocomputing, vol. 219, 2017, 333–349.
  21. [21] F. Ponulak and A. Kasinski, Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting, Neural Computation, 22(2), 2010, 467–510.
  22. [22] Y. Xu, X. Zeng, and S. Zhong, A new supervised learning algorithm for spiking neurons, Neural Computation, 25(6), 2013, 1472–1511.
  23. [23] J. Hu, H. Tang, K.C. Tan, H. Li, and L. Shi, A spiketiming-based integrated model for pattern recognition, Neural Computation, 25(2), 2013, 450–472.
  24. [24] M. Riesenhuber and T. Poggio, Hierarchical models of object recognition in cortex, Nature Neuroscience, 2(11), 1999, 1019– 1025.
  25. [25] Z. Nadasdy, Information encoding and reconstruction from the phase of action potentials, Frontiers in Systems Neuroscience, 3(6), 2009.
  26. [26] W. Gerstner and W.M. Kistler, Spiking neuron models: Single neurons, populations, plasticity (London: Cambridge University Press, 2002).
  27. [27] S. Schreiber, J.M. Fellous, D. Whitmer, P. Tiesinga, and T.J. Sejnowski, A new correlation-based measure of spike timing reliability, Neurocomputing, vol. 52, 2003, 925–931.

Important Links:

Go Back