Mingyu Fu, Lingling Yu, and Yulong Tuo
[1] M. Breivik, V.E. Hovstein, and T.I. Fossen, Ship formation control: a guided leader–follower approach, IFAC World Congress,Seoul, Korea, 17(1), 2008, 16008–16014. [2] J. Ghommam and F. Mnif, Coordinated path-following controlfor a group of underactuated surface vessels, IEEE Transactionson Industrial Electronics, 56(10), 2009, 3951–3963. [3] K.D. Do, Formation control of underactuated ships with elliptical shape approximation and limited communication ranges,Automatica, 48, 2012, 1380–1388. [4] J. Jiao and W. Liu, Guided leaderless coordinated formationalgorithm for multiple surface vessels, Journal of FranklinInstitute, 352(9), 2015, 3843–3857. [5] M. Miswanto, I. Pranoto, H.M. Mhammad, and D. Mahayana,The control design of ship formation with the presence of aleader, International Journal of Robotics & Automation, 4(1),2015, 53–62. [6] E. Borhaug, A. Pavlov, E. Panteley, and K.Y. Pettersen,Straight line path following for formations of underactuatedmarine surface vessels, IEEE Transactions on Control SystemsTechnology, 19(3), 2011, 493–506. [7] K. Shojaei, Leader-follower formation control of underactuatedautonomous marine surface vehicles with limited torque, Ocean Engineering, 105, 2015, 196–205. [8] C. Thorvaldsen and R. Skjetne, Formation control of fullyactuated marine vessels using group agreement protocols, Proc.IEEE Conf. on Decision and Control and European Control,Orlando, FL, 2011, 4132–4139. [9] J. Almeida, C. Silvestre, and A. Pascoal, Cooperative controlof multiple surface vessels in the presence of ocean currentsand parametric model uncertainty, International Journal ofRobust Nonlinear Control, 20(14), 2010, 1549–1565. [10] Z.H. Peng, D. Wang, and X.J. Hu, Robust adaptive formationcontrol of underactuated autonomous surface vehicles withuncertain dynamics, IET Control Theory Applications, 5(12),2011, 1378–1387. [11] Z.H. Peng, D. Wang, H. Wang, and W. Wang, Coordinated formation pattern control of multiple marine surface vehicles withmodel uncertainty and time-varying ocean currents, NeuralComputing & Applications, 115(4), 2014, 130–141. [12] L. Liu, D. Wang, and Z.H. Peng, Direct and composite iterativeneural control for cooperative dynamic positioning of marinesurface vessels, Nonlinear Dynamics, 81, 2015, 1315–1328. [13] A. Mokhtari, A. Benallegue, and Y. Orlov, Exact linearizationand sliding mode observer for a quadrotor unmanned aerialvehicle, International Journal of Robotics & Automation, 21(1),2006, 39–49. [14] W. Michiel, L. Erjen, Y.P. Kristin, and N. Henk, Outputfeedback tracking of ships, IEEE Transactions on ControlSystems Technology, 19(2), 2011, 442–448. [15] G. Xia, A. Zhao, H. Wu, and J. Liu, Adaptive robust outputfeedback trajectory tracking control for ships with input non-linearities International Journal of Robotics & Automation,31(4), 2016. DOI: 10.2316/Journal.206.2016.4.206-4529. [16] Z.H. Peng, D. Wang, H.T. Liu, G. Sun, and H. Wang,Distributed robust state and output feedback controller designsfor rendezvous of networked autonomous surface vehicles usingneural networks, Neurocomputing, 115, 2013, 130–141. [17] H. Wang, D. Wang, and Z.H. Peng, Neural network basedadaptive dynamic surface control for cooperative path followingof marine surface vehicles via state and output feedback,Neurocomputing, 133(8), 2014, 170–178. [18] K. Shojaei, Observer-based neural adaptive formation controlof autonomous surface vessels with limited torque, Roboticsand Autonomous Systems, 78, 2016, 83–96. [19] Y. Xia, Z. Zhu, and M. Fu, Back-stepping sliding mode controlfor missile systems based on an extended state observer, IETControl Theory Applications, 5(1), 2011, 93–102. [20] Z. Zhu, D. Xu, J.M. Liu, and Y.Q. Xia, Missile guidancelaw based on extended state observer, IEEE Transactions onIndustrial Electronics, 60(12), 2013, 5882–5891. [21] M.Y. Cui, W. Liu, H.Z. Liu, H.L. Jiang, and Z.P. Wang,Extended state observer-based adaptive sliding mode control ofdifferential-driving mobile robot with uncertainties, NonlinearDynamics, 83(1–2), 2016, 667–683. [22] B.Z. Guo and Z.L. Zhao, On the convergence of an extendedstate observer for nonlinear systems with uncertainty, SystemsControl Letters, 60(6), 2011, 420–430. [23] B.Z. Guo and Z.L. Zhao, On convergence of non-linear ex-tended state observer for multi-input multi-output systemswith uncertainty, IET Control Theory Applications, 6(15),2012, 2375–2386. [24] B.Z. Guo and Z.L. Zhao, On convergence of the nonlinearactive disturbance rejection control for MIMO systems, SIAMJournal of Control Optimization, 51(2), 2013, 1727–1757. [25] Z.L. Zhao and B.Z. Guo, On convergence of nonlinear extendedstated observers with switching functions, Proc. of the 35thChinese Control Conference, Chengdu, 2016, 664–669. [26] W. Ren and Y. Cao, Distributed coordination of multi-agentnetworks: emergent problems, models, and issues (Logan,Utah, USA: Springer, 2011). [27] T.I. Fossen, Handbook of marine craft hydrodynamics andmotion control (Chichester, UK: Wiley, 2011). [28] Y.H. Wang, Y.L. Tuo, S.X. Yang, and M. Fu, Nonlinear modelpredictive control of dynamic positioning of deep-sea ships witha unified model, International Journal of Robotics & Automation, 31(6), 2016. DOI: 10.2316/Journal.206.2016.6.206-4764. [29] S.P. Bhat and D.S. Bernstein, Geometric homogeneity withapplications to finite-time stability, Mathematics of Control,Signals, and Systems, 17(2), 2005, 101–127.
Important Links:
Go Back