A VELOCITY COMPENSATION VISUAL SERVO METHOD FOR OCULOMOTOR CONTROL OF BIONIC EYES

Zheng Zhu, Wei Zou, Qingbin Wang, and Feng Zhang

References

  1. [1] N. Pateromichelakis, A. Mazel, M.A. Hache, T. Koumpogiannis, et al., Head-eyes system and gaze analysis of the humanoid robot Romeo, Proc. 2014 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago, Illinois, 2014, 1374–1379.
  2. [2] I. Lütkebohle, F. Hegel, S. Schulz, M. Hackel, et al., The Bielefeld anthropomorphic robot head ‘Flobi’, Proc. IEEE Int. Conf. Robotics Automation, Anchorage, Alaska, 2010, 3384– 3391.
  3. [3] T. Kishi, T. Otani, N. Endo, P. Kryczka, et al., Development of expressive robotic head for bipedal humanoid robot, Proc. 2012 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vilamoura, Algarve, 2012, 4584–4589.
  4. [4] J. Li, J. Wang, Simon X. Yang, and S. Jia, SLAM based on information fusion of stereo vision and electronic compass, International Journal of Robotics and Automation, 31(3), 2016, 243–250.
  5. [5] M. Li, Z. Sun, S. Liu, Y. Ma, H. Ma, C. Sun, and Y. Jia, Stereo vision technologies for China’s lunar rover exploration mission, International Journal of Robotics and Automation, 31(2), 2016, 128–136.
  6. [6] L. Zhang, J. Sturm, D. Cremers, and D. Lee, Real-time human motion tracking using multiple depth cameras, Proc. 2012 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vilamoura, Algarve, 2012, 2389–2395.
  7. [7] L.A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab, Human skeleton tracking from depth data using geodesic distances and optical flow, Image and Vision Computing, 30(3), 2012, 217–226.
  8. [8] H.J. Asl, G. Oriolo, and H. Bolandi, An adaptive scheme for image-based visual servoing of an underactuated UAV, International Journal of Robotics and Automation, 29(1), 2014, 92–104.
  9. [9] S.S. Mehta, W. MacKunis, and T.F. Burks, Robust visual servo control in the presence of fruit motion for robotic citrus harvesting, Computers and Electronics in Agriculture, 123, 2016, 362–375.
  10. [10] Y. Wang, G. Zhang, H. Lang, B. Zuo, and C.W. de Silva, A modified image-based visual servo controller with hybrid camera configuration for robust robotic grasping, Robotics and Autonomous Systems, 62(10), 2014, 1398–1407.
  11. [11] N. Mansard and F. Chaumette, Task sequencing for high-level sensor-based control, IEEE Transactions on Robotics, 23(1), 2007, 60–72.
  12. [12] L.R. Young and L. Stark, Variable feedback experiments testing a sampled data model for eye tracking movements, IEEE Transactions on Human Factors in Electronics, 4(1), 1963, 38–51.
  13. [13] D.A. Robinson, Models of the saccadic eye movement control system, Kybernetik, 14(2), 1973, 71–83.
  14. [14] C. Quaia, P. Lef`evre, and L.M. Optican, Model of the control of saccades by superior colliculus and cerebellum, Journal of Neurophysiology, 82(2), 1999, 999–1018.
  15. [15] D.A. Robinson, J.L. Gordon, and S.E. Gordon, A model of the smooth pursuit eye movement system, Biological Cybernetics, 55(1), 1986, 43–57.
  16. [16] C. Brown, Gaze controls with interactions and delays, IEEE Transactions on Systems, Man, and Cybernetics, 20(1), 1990, 518–527.
  17. [17] F. Lunghi, S. Lazzari, and G. Magenes, Neural adaptive predictor for visual tracking system, Proc. 20th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, 20(3), 1998, 1389–1392.
  18. [18] J.J. Orban de Xivry and P. Lef`evre, Saccades and pursuit: Two outcomes of a single sensorimotor process, The Journal of Physiology, 584(1), 2007, 11–23.
  19. [19] Z. Zhu, Q. Wang, W. Zou, and F. Zhang, Overview of motion control on bionic eyes, 2015 IEEE Int. Conf. Robotics and Biomimetics, Zhuhai, China, 2015, 2389–2394.
  20. [20] J. Bruske, M. Hansen, L. Riehn, and G. Sommer, Biologically inspired calibration-free adaptive saccade control of a binocular camera-head, Biological Cybernetics, 77(6), 1997, 433–446.
  21. [21] X. Wang, J. Van De Weem, and P. Jonker, An advanced active vision system imitating human eye movements, 2013 16th Int. Conf. Advanced Robotics, Montevideo, Uruguay, 2013, 5–10.
  22. [22] M. Antonelli, A.J. Duran, E. Chinellato, and A.P. Pobil, Adaptive saccade controller inspired by the primates’ cerebellum, IEEE Int. Conf. Robotics and Automation, Seattle, Washington, 2015, 5048–5053.
  23. [23] P. Shi, F. Li, L. Wu, and C.C. Lim. Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems, IEEE Transactions on Neural Networks and Learning Systems, (99), 2016, 1–14.
  24. [24] F. Li, L. Wu, P. Shi, and C.C. Lim. State estimation and sliding mode control for semi-Markovian jump systems with mismatched uncertainties, Automatica, 51, 2015, 385–393.
  25. [25] N. Liu, X. Lyu, Y. Zhu, and J. Fei, Active disturbance rejection control for current compensation of active power filter, International Journal of Innovative Computing, Information and Control, 12(2), 2016, 407–418.
  26. [26] L. Deng, Comparison of image-based and position-based robot visual servoing methods and improvements, Doctoral Dissertation, University of Waterloo, Waterloo, Ontario, 2003.
  27. [27] B. Espiau, Effect of camera calibration errors on visual servoing in robotics, Experimental Robotics III: The 3rd Intel. Symp. Experimental Robotics, Lecture Notes in Control and Information Sciences, Berlin, Heidelberg, 200, 1993.
  28. [28] F. Chaumette, Potential problems of stability and convergence in image-based and position-based visual servoing, The confluence of vision and control, 1998, 66–78.
  29. [29] Z. Ceren and E. Altug, Image based and hybrid visual servo control of an unmanned aerial vehicle, Journal of Intelligent & Robotic Systems, 65(1–4), 2012, 325–344.
  30. [30] Q. Wang, W. Zou, D. Xu, and F. Zhang, 3D perception of biomimetic eye based on motion vision and stereo vision, Robot, 37(6), 2015, 760–768.

Important Links:

Go Back