SENSITIVITY ANALYSIS OF DYNAMIC LOAD CARRYING CAPACITY OF A CABLE-SUSPENDED ROBOT

Hami Tourajizadeh, Moharam H. Korayem, and Saeed R. Nekoo

References

  1. [1] R. Dekker, A. Khajepour, and S. Behzadipour, Design and testing of an ultra-high-speed, International Journal of Robotics and Automation, 21(1), 2006, 25–34.
  2. [2] L. Liang, P. Tang, B. Chen, Y. Tang, Y. Xu, and D. Lin, Dynamical modelling and structural parameter optimization of a novel spiral in-pipe robot, International Journal of Robotics and Automation, 31, 2016.
  3. [3] L. Feifei and L. Fei, Time-jerk optimal planning of industrial robot trajectories, International Journal of Robotics and Automation, 31(1), 2016, 415–426.
  4. [4] X. Chen, J. Wu, L. Wang, and G. Gao, Optimum design of a parallel conveyor for electrocoating of vehicle bodies, International Journal of Robotics and Automation, 2016, 31(3), 198–205.
  5. [5] A. B. Alp, Cable suspended parallel robots, MSc. Thesis, Mechanical Engineering Department, University of Delaware, 2001.
  6. [6] M.H. Korayem and Kh. Najafi, Calculating the maximum dynamical carrying capacity of cable driven suspended robot using iterative linear programming, MSc. Thesis, Mechanical Engineering Department, Azad University, 2009.
  7. [7] M.H. Korayem, M. Bamdad and S Bayat, Optimal trajectory planning with maximum load carrying capacity for cable suspended robots, IEEE International Symposium Mechatronics and its Applications, ISMA, 2009, 1–6.
  8. [8] S. Bayat, Optimal path planning for a spatial cable driven suspended robot, MSc. Thesis, Mechatronics Engineering Department, Azad University, 2008.
  9. [9] Sh. Fang, D. Franitza, M. Torlo, F. Bekes, and M. Hiller, Motion control of a tendon-based parallel manipulator using optimal tension distribution, IEEE/ASME, Transaction on Mechatronics, 9(3), 2004, 561–568.
  10. [10] A. Trevisani, P. Gallina, and R.L. Williams II, Cable-DirectDriven Robot (CDDR) with passive SCARA support: Theory and simulation, Springer Science Business Media B.V., Journal of Intelligent Robot and Systems, 46(1), 2006, 73–94.
  11. [11] P. Gholami, M. Aref, and H.D. Taghirad, On the control of the KNTU CDRPM: a cable driven redundant parallel manipulator, IEEE/RSJ International Conf. on Intelligent Robots and Systems, Acropolis Convention Center, 2008.
  12. [12] J. Vadia, Planar Cable Driven Robot: Hardware Implementation, MSc. Thesis, College of Engineering and Technology, Department of Mechanical Engineering, Ohio University, 2003.
  13. [13] M.H. Korayem and H. Tourajizadeh, Maximum DLCC of spatial cable robot for a predefined trajectory within the workspace using closed loop optimal control approach, Journal of Intelligent and Robotic Systems, 63(1), 2011, 75–99.
  14. [14] M.H. Korayem, H. Tourajizadeh, and M. Bamdad, Dynamic load carrying capacity of flexible cable suspended robot: Robust feedback linearization control approach, Journal of Intelligent and Robotic Systems, 60(3), 2010, 341–363.
  15. [15] M.H. Korayem, H. Tourajizadeh, M. Jalali, and E. Omidi, Optimal path planning of spatial cable robot using optimal sliding mode control, International Journal of Advanced Robotic Systems, 9(5), 2012, 1–14.
  16. [16] M.H. Korayem, H. Tourajizadeh, A. Zehforoosh, and A.H. Korayem, Optimal regulation of a cable robot in presence of obstacle using optimal adaptive feedback linearization approach, Robotica, 33(4), 2014, 933–952.
  17. [17] M.H. Korayem, H. Tourajizadeh, and A. Zehfroosh, Optimal regulation of a flexible cable robot in presence of obstacles and moving boundaries, International Journal of Robotics and Automation, 2013, 1515–1543.
  18. [18] M.H. Korayem, H. Tourajizadeh, A. Zehforoosh, A.H. Korayem, Optimal path planning of a cable suspended robot with moving boundary using optimal feedback linearization approach, Journal of Nonlinear Dynamics, 78(2), 2014, 1515–1543.
  19. [19] M.H. Korayem, A. Zehfroosh, H. Tourajizadeh, and S. Manteghi, Optimal motion planning of non-linear dynamic systems in the presence of obstacles and moving boundaries using SDRE: Application on cable-suspended robot, Journal of Nonlinear Dynamics, 76(2), 2013, 1423–1441.
  20. [20] Y. Chen, F. Xie, X. Liu, and Y. Zhou, Error modelling and sensitivity analysis of a parallel robot with SCARA (Selective Compliance Assembly Robot Arm) motions, Chinese Journal of Mechanical Engineering, 27(4), 2014, 693–702.
  21. [21] W.W. Shang, S. Cong, and Y. Ge, Coordination motion control in the task space for parallel manipulators with actuation redundancy, IEEE Transactions on Automation Science and Engineering, 10, 2013, 665–673.
  22. [22] F. Lin, Robust control design an optimal control approach, Wayne State University, USA and Tongji University, China, Copyright Research Studies Press Limited, Published by Wiley, England, 2007.
  23. [23] B. Ouyang and W. Shang, A new computation method for the force-closure workspace of cable-driven parallel manipulators, Robotica, 33, 2015, 537–547.
  24. [24] M. Gouttefarde, D. Daney, and J.P. Merlet, Interval-analysisbased determination of the wrench-feasible workspace of parallel cable-driven robots, IEEE Transactions on Robotic, 27, 2011, 1–12.
  25. [25] M.H. Korayem, M. Bamdad, and M. Saadat, Workspace analysis of cable-suspended robots with elastic cable, IEEE International Conf. on Robotics and Biomimetics, 2007. ROBIO 2007, Sanya, 2007, 1942–1947.
  26. [26] M.H. Korayem, M. Bamdad, H. Tourajizadeh, H. Shafiee, R. M. Zehtab, and A. Iranpour, Development of ICASBOT: A cable-suspended robot’s with six DOF, Arabian Journal for Science and Engineering, 38(5), 2012, 1-19.

Important Links:

Go Back