SYNCHRONIZATION OF MULTIPLE CHAOTIC SYSTEMS USING A NONLINEAR GROUPING FEEDBACK FUNCTION METHOD, 26-31.

Ahmad Ruzitalab, Mohammad H. Farahi, and Gholam H. Erjaee

References

  1. [1] L.M. Pecora and T.L. Carroll, Synchronization in chaoticsystems, Physical Review Letters, 64(8), 1990, 821–825.
  2. [2] E.W. Bai and K.E. Lonngren, Synchronization of two Lorenzsystems using active control, Chaos, Solitons & Fractals, 8(1),1997, 51–58.
  3. [3] V. Sundarapandian, Adaptive control and synchronization ofhyperchaotic Newton–Leipnik system, International Journalof Advanced Information Technology, 1(3), 2011, 22–33.
  4. [4] V. Sundarapandian, Adaptive synchronization of hyperchaoticLorenz and hyperchaotic L¨u systems, International Journal ofInstrumentation and Control Systems, 1(1), 2011, 1–18.
  5. [5] S. Vaidyanathan, Adaptive control and synchronization ofhyperchaotic Cai system, International Journal of ControlTheory and Computer Modelling, 1(1), 2011, 1–13.
  6. [6] V. Sundarapandian, Adaptive control and synchronizationof the uncertain Sprott J system, International Journal ofAdvances in Science and Technology, 2(4), 2011, 28–36.
  7. [7] Y. Xu and H. Wang, Synchronization of fractional-order chaoticsystems with Gaussian fluctuation by sliding mode control, Ab-stract and Applied Analysis, Hindawi Publishing Corporation,(Vol. 2013), 2013, 1–7.
  8. [8] C.S. Shieh, FPGA chip with fuzzy PWM control for syn-chronizing a chaotic system, Control and Intelligent Systems,40(3), 2012.
  9. [9] M.K. Ali and J.Q. Fang, Synchronization of chaos and hyper-chaos using linear and nonlinear feedback functions, PhysicalReview E, 55(5), 1997, 5285–5290.
  10. [10] G.H. Erjaee and S. Momani, Phase synchronization in fractionaldifferential chaotic systems, Physics Letters A, 372(14), 2008,2350–2354.
  11. [11] G.H. Erjaee, On analytical justification of phase synchronization in different chaotic systems, Chaos, Solitons & Fractals,39(3), 2009, 1195–1202.
  12. [12] W. Lu, Y. Han, and T. Chen, Synchronization in networks oflinearly coupled dynamical systems via event–triggered diffu-sions, IEEE Transactions on Neural Networks and LearningSystems, 26(12), 2015, 3060–3069.
  13. [13] C.W. Wu, Control of networks of coupled dynamical systems,Consensus and Synchronization in Complex Networks, SpringerBerlin Heidelberg, 2012, 23–50.
  14. [14] A. Kazemy, Synchronization for complex dynamic networkswith state and coupling time-delays, International Journal ofSmart Electrical Engineering, 4(1), 2015, 23–28.
  15. [15] N. Cai, J.X. Xi, and Y.S. Zhong, Asymptotic swarm stabilityof high-order multi-agent systems: condition and application,Control and Intelligent Systems, 40(1), 2012, 33–39.
  16. [16] L. Deng, X. Ma, J. Gu, and Y. Li, Multi-robot dynamicformation path planning with improved polyclonal artificialimmune algorithm, Control and Intelligent Systems, 42(4),2014, 1–8.
  17. [17] M. Jun-hai and C. Yu-Shu, Study for the bifurcation topologicalstructure and the global complicated character of a kindof nonlinear finance system (I), Applied Mathematics andMechanics, 22(11), 2001, 1240–1251.
  18. [18] M. Jun-hai and C. Yu-Shu, Study for the bifurcation topologicalstructure and the global complicated character of a kindof nonlinear finance system (II), Applied Mathematics andMechanics, 22(12), 2001, 1375–1382.

Important Links:

Go Back