OPTIMIZATION OF INTERNAL GRID OF WIND FARMS BASED ON GENETIC ALGORITHMS CONSIDERING OPTIMAL CABLE

Paulo R.D. Monteiro, Thiago T. Borges,and André F. Schiochet

References

  1. [1] World Energy Outlook 2014, International Energy Agency (IEA), http://www.worldenergyoutlook.org/weo2014 (accessed Apr. 29, 2015).
  2. [2] Balanço energético nacional 2015: Ano base 2014, Empresa de Pesquisa Energética (EPE), Rio de Janeiro, 2015.
  3. [3] H.D. Braz, G.H.S.V. Melo, and B.A. Souza, et al., Planejamento da rede coletora de um parque de geração eólica usando algoritmos genéticos, Simpósio Brasileiro de Sistemas Elétricos, UFCG, Brasil, 2006, 1–6.
  4. [4] H.N. Tram and D.L. Wall, Optimal conductor selection in planning radial distribution systems,IEEE Transactions on Power Systems, 3(1), 1988, 200–206.
  5. [5] I.J Ramirez-Rosado and J.L Bernal-Agustin, Genetic algorithms applied to the design of large power distribution systems,IEEE Transactions on Power Systems, 13(2), 1998, 696–703.
  6. [6] R.S. Rao, Optimal conductor selection for loss reduction in radial distribution systems using differential evolution, International Journal of Engineering Science and Technology, 2(7), 2010, 2829–2838.
  7. [7] H.D. Braz, Configuração de Sistemas de Distribuição usando um Algoritmo Genético Sequencial, Doctoral Dissertation, Universidade Federal de Campina Grande, Campo Grande, PB, 2010.
  8. [8] M. Thenepalle, A comparative study on optimal conductor selection for radial distribution network using conventional and genetic algorithm approach, International Journal of Computer Applications (IJCA), 17(2), 2011, 6–13.
  9. [9] D.L. Duan, X.D. Ling, and X.Y. Wu, et al., Reconfiguration of distribution network for loss reduction and reliability improvement based on an enhanced genetic algorithm, International Journal of Electrical Power & Energy Systems, 64, 2015, 88–95.
  10. [10] O. Dahmani, S. Bourguet, and P. Guerin, et al., Optimization of the internal grid of an offshore wind farm using genetic algorithm, IEEE Grenoble Power Tech (POWERTECH), Grenoble, 2013, 1–6.
  11. [11] F.M. Gonzalez-Longatt, P. Wall, and P. Regulski, et al., Optimal electric network design for a large offshore wind farm based on a modified genetic algorithm approach, IEEE Systems Journal, 6(1), 2012, 164–172.
  12. [12] P.R.D. Monteiro, C.A.P. Soares, T.T. Borges, and A.F. Schiochet, Methodology for sizing wind farm collector network infrastructure using a genetic algorithm, International Journal of Engineering & Technology, 16(5), 2016, 57–63.
  13. [13] D.E. Goldberg, Genetic algorithms in search, optimization and machine learning (Reading, MA: Addison Wesley, 1989), 11–172.
  14. [14] J.H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence, (Cambridge: MIT, 1995), 211.
  15. [15] F. Glover, Tabu search – Part L, ORSA Journal on Computing, 1, 1989, 190–206.
  16. [16] F. Glover, Tabu search – Part N, ORSA Journal on Computing, 2, 1990, 4–32.
  17. [17] S. Klrkpatrick, C.D. Gelat, and M.P. VECCI-ll, Optimization by simulated annealing, Science, 220, 1983, 671–680.
  18. [18] V.A. Cerny, A thermodynamical approach to the travelling salesman problem: An efficient simulated annealing algorithm, Journal or Optimization Theory and Application, 45, 1985, 41–51.
  19. [19] M.N. de Miranda, Algoritmos Genéticos: Fundamentos e Aplicações, 2007, 2016, http://www.nce.ufrj.br/GINAPE/ VIDA/alggenet.htm (accessed Mar. 10, 2007).
  20. [20] Cabos elétricos — Cálculo da corrente nominal — Condições de operação — Otimização econômica das seções dos cabos de potência, ABNT NBR-15920, Rio de Janeiro, 2011.
  21. [21] A.J. Monticelli, Fluxo de carga em redes de energia elétrica, E. Blucher, 1983.
  22. [22] Instalações elétricas de média tensão de 1,0 kV a 36,2kV, ABNT NBR-14039, Rio de Janeiro, 2005.

Important Links:

Go Back