Huashan Liu, Lingbin Zeng, Wuneng Zhou, and Shiqiang Zhu


  1. [1] S.Q. Zhu, Q.C. Chen, and X.Y. Wang, Dynamic modellingusing screw theory and nonlinear sliding mode control of serialrobot, International Journal of Robotics & Automation, 31(1),2016, 63–75.
  2. [2] H.S. Liu, K.R. Hao, and X.B. Lai, Fuzzy saturated outputfeedback tracking control for robot manipulators: a singularperturbation theory based approach, International Journal ofAdvanced Robotic Systems, 8(4), 2011, 43–53.
  3. [3] S. Oh and K. Kong, Two-degree-of-freedom control of a two-link manipulator in the rotating coordinate system, IEEETransactions on Industrial Electronics, 62(9), 2015, 5598–5607.
  4. [4] H.J. Yang and J.K. Liu, Minimum parameter learning methodfor an n-link manipulator with nonlinear disturbance observer,International Journal of Robotics & Automation, 31(3), 2016,206–212.
  5. [5] M.J. Kim and W.K. Chung, Disturbance-observer-based PDcontrol of flexible joint robots for asymptotic convergence,IEEE Transactions on Robotics, 31(6), 2015, 1508–1516.
  6. [6] K. Kherraz, M. Hamerlain, and N. Achour, Robust neuro-fuzzy sliding mode controller for a flexible robot manipulator,International Journal of Robotics & Automation, 30(1), 2015,40–49.
  7. [7] S. Formentin, A. Karimi, and S.M. Savaresi, Optimal inputdesign for direct data-driven tuning of model-reference controllers, Automatica, 49(6), 2013, 1874–1882.
  8. [8] J.G. Ziegler and N.B. Nichols, Optimum settings for automaticcontrollers, Transactions of the ASME, 115(2B), 1942, 759–768.
  9. [9] Y.S. Ding, L.R.N. Xu, and K. Hao, Data-driven neuroendocrineultrashort feedback-based cooperative control system, IEEETransactions on Control Systems Technology, 23(3), 2015,1205–1212.
  10. [10] S. Formentin, P.D. Filippi, and M. Corno, Data-driven designof braking control systems, IEEE Transactions on ControlSystems Technology, 21(1), 2013, 186–193.
  11. [11] G. Wang and Z. Huang, Data-driven fault-tolerant controldesign for wind turbines with robust residual generator, IETControl Theory and Applications, 9(7), 2015, 1173–1179.
  12. [12] Y. Zhang, Data-driven design of two-degree-of-freedom controllers using reinforcement learning techniques, IET ControlTheory and Applications, 9(7), 2015, 1011–1021.
  13. [13] S. Formentin, S.M. Savaresi, and L. Del Re, Non-iterativedirect data-driven controller tuning for multivariable systems:Theory and application, IET Control Theory and Applications,6(9), 2012, 1250–1257.
  14. [14] S.E. Shafiei, T. Knudsen, R. Wisniewski, and P. Andersen,Data-driven predictive direct load control of refrigeration systems, IET Control Theory and Applications, 9(7), 2015, 1022–1033.
  15. [15] Z. Hou and S. Jin, A novel data-driven control approach fora class of discrete-time nonlinear systems, IEEE Transactionson Control Systems Technology, 19(6), 2011, 1549–1558.
  16. [16] Z. Hou and S. Jin, Data-driven model-free adaptive controlfor a class of MIMO nonlinear discrete-time systems, IEEETransactions on Neural Networks, 22(12), 2011, 2173–2188.
  17. [17] Z. Hou, The parameter identification, adaptive control andmodel free learning adaptive control for nonlinear systems,Ph.D. Thesis, Northeastern University, China, 1994.
  18. [18] P. Freeman, R. Pandita, N. Srivastava, and G. L. Balas,Model-based and data-driven fault detection performance fora small UAV, IEEE/ASME Transactions on Mechatronics,18(4), 2013, 1300–1309.
  19. [19] S. Yin, H. Luo, and S. Ding, Real-time implementation offault-tolerant control systems with performance optimization,IEEE Transactions on Industrial Electronics, 61(5), 2013,2402–2411.
  20. [20] Z. Hou and Z. Wang, From model-based control to data-drivencontrol: Survey, classification and perspective, InformationSciences, 235(20), 2013, 3–35.
  21. [21] S. Keating and N. Oxman, Compound fabrication: A multi-functional robotic platform for digital design and fabrication,Robotics and Computer-Integrated Manufacturing, 29(6), 2013,439–448.
  22. [22] W. Song, G. Wang, J. Xiao, G. Wang, and Y. Hong, Researchon multi-robot open architecture of an intelligent CNC systembased on parameter-driven technology, Robotics and Computer-Integrated Manufacturing, 28(3), 2012, 326–333.
  23. [23] A. da Silva Simoes, E.L. Colombini, J.P. Matsuura, and M.N.Franchin, TORP: The open robot project, Journal of Intelligent& Robotic Systems, 66(1–2), 2012, 3–22.
  24. [24] F. Nagata, S. Yoshitake, A. Otsuka, K. Watanabe, and M.K.Habib, Development of CAM system based on industrial roboticservo controller without using robot language, Robotics andComputer-Integrated Manufacturing, 29(3), 2013, 454–347.
  25. [25] I. Ha, Y. Tamura, and H. Asama, Development of open platformhumanoid robot DARwln-OP, Advanced Robotics, 27(3), 2013,223–232.
  26. [26] K. Kozlowski, M. Kowalski, M. Michalski, and P. Parulski,Universal multiaxis control system for electric drives, IEEETransactions on Industrial Electronics, 60(2), 2013, 691–698.
  27. [27] L. Pugi, E. Galardi, C. Carcasci, A. Rindi, and N. Lucchesi,Preliminary design and validation of a real time model forhardware in the loop testing of bypass valve actuation system,Energy Conversion and Management, 92, 2015, 366–384.
  28. [28] L. Pugi, E. Galardi, C. Carcasci, and N. Lucchesi, Hardware-in-the-loop testing of bypass valve actuation system: designand validation of a simplified real time model, Proceedings ofthe Institution of Mechanical Engineers, Part E: Journal ofProcess Mechanical Engineering, 31(2), 2017, 212–235.
  29. [29] L. Pugi, M. Malvezzi, A. Tarasconi, A. Palazzolo, G. Cocci,and M. Violani, HIL simulation of WSP systems on MI-6 testrig, Vehicle System Dynamics, 44(sup1), 2006, 843–852.
  30. [30] Ubuntu Documentation Team, Ubuntu server guide for Ubuntu14.04, 2014.
  31. [31] Texas Instruments, TMS320 DSP/BIOS v5.42 user’s guide,2012.
  32. [32] J.J. Labrosse, µC/OS-II: The real-time kernel, 2nd ed. (Weston,FL: CMP Books, 2013).
  33. [33] Micrium, µC/GUI, Embedded graphical user interface-user’smanual V5.18.00, 2013.
  34. [34] A. Dunkels, IwIPdocumentation, 2015. http://lwip.nongnu.org/
  35. [35] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux devicedrivers, 3rd ed. (Sebastopol, CA: O’Reilly Media, Inc., 2005).
  36. [36] G.C. Goodwin and K.S. Sin, Adaptive filtering, prediction andcontrol (Englewood Cliffs, NJ: Prentice-Hall, 1984).
  37. [37] R.H. Chi, Z.S. Hou, S.T. Jin, D.W. Wang, and C.J. Chien,Enhanced data-driven optimal terminal ILC using currentiteration control knowledge, IEEE Transactions on NeuralNetworks and Learning Systems, 26(11), 2015, 2939–2948.
  38. [38] Y.Q. Li and Z.S. Hou, Data-driven asymptotic stabilization fordiscrete-time nonlinear systems, Systems & Control Letters,64(2), 2014, 79–85.
  39. [39] H.S. Liu, X.B. Lai, and W.X. Wu, Time-optimal and jerk-continuous trajectory planning for robot manipulators withkinematic constraints, Robotics and Computer-Integrated Manufacturing, 29(2), 2013, 309–317.
  40. [40] H.S. Liu, Y. Zhang, and S.Q. Zhu, Novel inverse kinematicapproaches for robot manipulators with pieper-criterion basedgeometry, International Journal of Control, Automation, andSystems, 13(5), 2015, 1242–1250.

Important Links:

Go Back