A CONTROL STRATEGY FOR DEVELOPED LOWER LIMBS ROBOTIC REHABILITATION CHAIR

Amine M. Mamou and Nadia Saadia

References

  1. [1] D.J. Reinkensmeyer, J.L. Emken, and S.C. Cramer, Robotics,motor learning, and neurologic recovery, Annual Review ofBiomedical Engineering, 6, 2004, 497–525.
  2. [2] H. Schmidt, C. Werner, R. Bernhardt, S. Hesse, et al., Gaitrehabilitation machines based on programmable footplates,Journal of Neuroengineering and Rehabilitation, 4(1), 2007, 1.
  3. [3] E. Akdo˘gan and M.A. Adli, The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot, Mechatronics, 21(3), 2011, 509–522.
  4. [4] C. Li, Z. Rus´ak, Y. Hou, C. Young, and L. Ji, Upper limb motorrehabilitation integrated with video games focusing on trainingfingers’ fine movements, International Journal of Robotics andAutomation, 29(4), 2014, 359–368.
  5. [5] I. D´ıaz, J.J. Gil, and E. S´anchez, Lower-limb robotic rehabilitation: Literature review and challenges, Journal of Robotics,2011.
  6. [6] Y.T. Rad and V.A. Azar, Design and computer simulation ofa software controller for a hardware robot with 2 degrees offreedom for lower limb physiotherapy, Applied Mathematicsin Engineering, Management and Technology, Special Issue inManagement and Technology, 2, 2014, 371–381.
  7. [7] H. Herr, Exoskeletons and orthoses: Classification, designchallenges and future directions, Journal of Neuroengineeringand Rehabilitation, 6(1), 2009, 1.
  8. [8] Y. Allemand, Y. Stauffer, R. Clavel, and R. Brodard, Design ofa new lower extremity orthosis for overground gait training withthe walktrainer, IEEE Conf. Rehabilitation Robotics ICORR,Kyoto, Japan, 2009, 550–555.
  9. [9] M.A. Mamou and N. Saadia, Robotic rehabilitation of lowerlimbs: Reproduction of human physiological movements,Advances in swarm and computational intelligence (Cham:Springer, 2015), 171–179.
  10. [10] M. Bouri, Y. Stauffer, C. Schmitt, Y. Allemand, et al., Thewalktrainer: A robotic system for walking rehabilitation, IEEEConf. on Robotics and Biomimetics ROBIO, Beijing, China,2006, 1616–1621.
  11. [11] H. Kawamoto and Y. Sankai, Power assist system Hal-3 for gaitdisorder person, ICCHP ’02 Proceedings of the 8th InternationalConference on Computers Helping People with Special Needs,Verlag, London, July 2002, 196–203.
  12. [12] K.H. Seo and J.J. Lee, The development of two mobile gaitrehabilitation systems, IEEE Transactions on Neural Systemsand Rehabilitation Engineering, 17(2), 2009, 156–166.
  13. [13] G. Colombo, M. Joerg, R. Schreier, and V.Dietz, Treadmilltraining of paraplegic patients using a robotic orthosis, Journalof Rehabilitation Research and Development, 37(6), 2000, 693.
  14. [14] D.J. Reinkensmeyer, D. Aoyagi, J.L. Emken, and J.A. Galvez,Tools for understanding and optimizing robotic gait training,Journal of Rehabilitation Research and Development, 43(5),2006, 657.
  15. [15] J.F. Veneman, R. Kruidhof, E.E. Hekman, R. Ekkelenkamp,et al., Design and evaluation of the lopes exoskeleton robotfor interactive gait rehabilitation, IEEE Transactions NeuralSystems and Rehabilitation Engineering, 15(3), 2007, 379–386.
  16. [16] M. Pietrusinski, I. Cajigas, Y. Mizikacioglu, M. Goldsmith,et al., Gait rehabilitation therapy using robot generated forcefields applied at the pelvis, IEEE Conf on Haptics Symposium,Waltham, Massachusetts, USA (Boston Area), March 2010,401–407.
  17. [17] H. Yano, S. Tamefusa, N. Tanaka, H. Saitou, et al., Gaitrehabilitation system for stair climbing and descending, IEEEConf on Haptics Symposium, Waltham, Massachusetts, USA(Boston Area), March 2010, 393–400.
  18. [18] J. Yoon, B. Novandy, C.H. Yoon, and K.J. Park, A 6-DOFgait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains, IEEE/ASME Transactions Mechatronics, 15(2), 2010,201–215.
  19. [19] K. Homma, O. Fukuda, J. Sugawara, Y. Nagata, et al., Awire-driven leg rehabilitation system: development of a 4-dofexperimental system, IEEE/ASME International Conf. onAdvanced Intelligent Mechatronics, AIM, Proceedings 2, PortIsland, Japan, July 2003, 908–913.
  20. [20] M. Bouri, B.L. Gall, and R. Clavel, A new concept of parallelrobot for rehabilitation and fitness: The Lambda, IEEEInternational Conf. on Robotics and Biomimetics, ROBIO,Guilin, China, December 2009, 2503–2508.
  21. [21] C. Schmitt and P. M´etrailler, The Motion MakerTM: A rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation, International Workshop on FunctionalElectrical Stimulation, Vienna, No. LSRO2-CONF-2006-011,117–120.
  22. [22] T. Kikuchi, K. Oda, and J. Furusho, Leg-robot for demonstration of spastic movements of brain-injured patients withcompact magnetorheological fluid clutch, Advanced Robotics,24(5–6), 2010, 671–686.
  23. [23] J. Nikitczuk, B. Weinberg, P.K. Canavan, and C. Mavroidis,Active knee rehabilitation orthotic device with variable damping characteristics implemented via an electrorheological fluid,IEEE/ASME Transactions on Mechatronics, 15(6), 2010, 952–960.
  24. [24] M. Girone, G. Burdea, M. Bouzit, V. Popescu, et al., AStewart platform-based system for ankle telerehabilitation,Autonomous Robots, 10(2), 2001, 203–212.
  25. [25] P.R. Ouyang, W. Yue, and V. Pano, Hybrid PD sliding modecontrol for robotic manipulators, International Journal ofRobotics and Automation, 29(4), 2014, 387–395.
  26. [26] D.C. Theodoridis, Y.S. Boutalis, and M.A. Christodoulou, Anew adaptive neuro-fuzzy controller for trajectory trackingof robot manipulators, International Journal of Robotics andAutomation, 26(1), 2011, 64.
  27. [27] K. Kherraz, M. Hamerlain, and N. Achour, Robust neuro-fuzzy sliding mode controller for a flexible robot manipulator,International Journal of Robotics and Automation, 30(1), 2015.
  28. [28] T. Mai, Y. Wang, and T. Ngo, Adaptive tracking controlfor robot manipulators using fuzzy wavelet neural networks,International Journal of Robotics and Automation, 30(1), 2015.
  29. [29] I.B. Kucukdemiral, Adaptive self-tuning control of robot ma-nipulators with periodic disturbance estimation, InternationalJournal of Robotics and Automation, 25(1), 2010.
  30. [30] X.Y. Wang and Y.J. Pi, Trajectory tracking control of ahydraulic parallel robot manipulator with lumped disturbanceobserver, International Journal of Robotics and Automation,28(2), 2013, 103–111.
  31. [31] L.C. Kwek, A.W. Tan, and E.K. Wong, Generalized predictivecontrol on a robotic manipulator system, International Journalof Robotics and Automation, 28(3), 2013, 277–283.
  32. [32] M.A. Mamou and N. Saadia, Neural networks controller of alower limbs robotic rehabilitation chair, Conf. on Biodevices,France, Angers, 2014, 65–71.
  33. [33] L. Merrouche, Conception d’orth`eses fonctionnelles pour lesparapl´egiques, Doctoral Dissertation, Universit´e des Scienceset de la Technologie Houari-Boum´edi`ene, Alger, 2011.
  34. [34] M.W. Spong, S. Hutchinson, and M. Vidyasagar, Robot model-ing and control, Vol. 3 (New York, NY: John Wiley and Sons,2006).
  35. [35] K.S. Fu, R.C. Gonzalez, and C.S.G. Lee, Robotics: Controlsensing, vision, and intelligence (New Delhi: Tata McGraw-Hill Education, 1987).
  36. [36] W. Khalil, Dynamic modeling of robots using recursiveNewton–Euler techniques, Conf. on ICINCO, Portugal, June2010.
  37. [37] F. Boyer, W. Khalil, M. Benosman, and G.Le Vey, Modelingand control of flexible robots, Conf. on Modeling, PerformanceAnalysis and Control of Robot Manipulators, 2007, 337–394.
  38. [38] R.N. Jazar, Theory of applied robotics: Kinematics, dynamics,and control, 2nd ed. (Berlin: Springer Science and BusinessMedia, 2010).
  39. [39] W. Khalil and E. Dombre, Modeling, identification and controlof robots (Oxford: Butterworth-Heinemann, 2004).
  40. [40] K.J. ˚Astr¨om, and T. H¨agglund, PID controllers: Theory,design, and tuning, 2nd ed. (Research Triangle Park, NC:Instrument Society of America, 1998).
  41. [41] M.I. Lourakis, A brief description of the Levenberg-Marquardtalgorithm implemented by Levmar, Foundation of Researchand Technology, 4, 2005, 1–6.
  42. [42] D.W. Marquardt, An algorithm for least-squares estimationof nonlinear parameters, Journal of the Society for Industrialand Applied Mathematics, 11(2), 1963, 431–441.
  43. [43] M.T. Hagan and M.B. Menhaj, Training feedforward networkswith the Marquardt algorithm, IEEE Transactions on NeuralNetworks, 5(6), 1994, 989–993.
  44. [44] H. Yu and B.M. Wilamowski, Levenberg–Marquardt training,Industrial Electronics Handbook, 5(12), 2011, 1–16.
  45. [45] S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, et al.,OpenSim: Open-source software to create and analyze dynamicsimulations of movement, IEEE Transactions on BiomedicalEngineering, 54(11), 2007, 1940–1950.
  46. [46] L. Zaccarian and A.R. Teel, Modern anti-windup synthesis:Control augmentation for actuator saturation (Princeton, NJ:University Press, 2011).

Important Links:

Go Back