A ROBOTIC COLONOSCOPE WITH DOUBLE BALLOONS: ANALYSIS, DESIGN, AND EXPERIMENTS

Kundong Wang, Bing Chen, and Tong Li

References

  1. [1] P. Dario, M.C. Carrozza, B. Allotta, and E. Guglielmelli, Micromechatronics in medicine, IEEE/ASME Transactions on Mechatronics, 1(2), 1996, 137–148.
  2. [2] R. Goffredo, D. Accoto, and E. Guglielmelli, Swallowable smart pills for local drug delivery: Present status and future perspectives, Expert Review of Medical Devices, 12(5), 2015, 584–599.
  3. [3] M. Simi, P. Valdastri, C. Quaglia, A. Menciassi, et al., Design, fabrication, and testing of a capsule with hybrid locomotion for gastrointestinal tract exploration, IEEE/ASME Transactions on Mechatronics, 15(2), 2010, 170–180.
  4. [4] G. Ciuti, P. Valdastri, A. Menclassi, and P. Dario, Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures, Robotica, 28(SI), 2010, 199–207.
  5. [5] B. Kim, M. Lee, Y. Lee, and Y. Kim, An earthworm like micro robot using shape memory alloy actuator, Sensors and Actuators A, 125(2), 2006, 429–437.
  6. [6] B. Kim and S. Park, An earthworm-like locomotive mechanism for capsule endoscopes, Proc. IEEE Int. Conf. Robotics and Automation, Barcelona, Spain, 2005, 1205–1211.
  7. [7] S. Yim and M. Sitti, Design and rolling locomotion of a magnetically actuated soft capsule endoscope, IEEE Transactions on Robotics, 99(2), 2011, 1–12.
  8. [8] S. Yim and M. Sitti, 3-D localization method for a magnetically actuated soft capsule endoscope and its applications, IEEE Transactions on Robotics, 29(5), 2013, 1139–1151.
  9. [9] H. Zhou, G. Alici, T.D. Than, and W. Li, Modeling and experimental characterization of propulsion of a spiral-type microrobot for medical use in gastrointestinal tract, IEEE Transactions on Biomedical Engineering, 60(6), 2013, 1751–1759.
  10. [10] Y. Kim and D. Kim, Novel propelling mechanisms based on frictional interaction for endoscope robot, Tribology & Lubrication Technology, 69(2), 2016, 34–43.
  11. [11] H. Park, D. Kim, and B. Kim, Robotic colonoscope with long stroke and reliable leg clamping, International Journal of Precision Engineering and Manufacturing, 13(8), 2012, 1461–1466.
  12. [12] D. Zarrouk and M. Shoham, Analysis and design of one degree of freedom worm robots for locomotion on rigid and compliant terrain, Journal of Mechanical Design, 134(2), 2012, 200–210.
  13. [13] D. Zarrouk, I. Sharf, and M. Shoham, Conditions for wormrobot locomotion in a flexible environment: theory and experiments, IEEE Transactions on Biomedical Engineering, 59(4), 2012, 1057–1067.
  14. [14] S. Kim, J. Lee, S. Hashi, and K. Ishiyama, Oscillatory motion-based miniature magnetic walking robot actuated by a rotating magnetic field, Robotics and Autonomous Systems, 60(2), 2012, 288–295.
  15. [15] L. Sliker, X. Wang, J. Schoen, and M. Rentschler, Micropatterned treads for in-vivo robotic mobility, Journal of Medical Devices-Transactions on the ASME, 4(4), 2010, 1–8.
  16. [16] L. Sliker and M. Rentschler, The design and characterization of a testing platform for quantitative evaluation of tread performance on multiple biological substrates, IEEE Transactions on Biomedical Engineering, 59(9), 2012, 2524–2530.
  17. [17] T. Nakamura, Y. Hidaka, M. Yokojima, and K. Adachi, Development of peristaltic crawling robot with artificial rubber muscles attached to large intestine endoscope, Advanced Robotics, 26(10), 2012, 1161–1182.
  18. [18] T. Kato, I. Okumura, S.E. Song, A.J. Golby, et al., Tendondriven continuum robot for endoscopic surgery: preclinical development and validation of a tension propagation model, IEEE/ASME Transactions on Mechatronics, 20(5), 2015, 2252–2263.
  19. [19] S. He, G. Yan, Z. Wang, J. Gao, et al., Characteristics of locomotion efficiency of an expanding-extending robotic endoscope in the intestinal environment, Journal of Engineering in Medicine, 229(7), 2015, 515–523.
  20. [20] D.M. Rincon and J.M. Sotelo, Optimization in the design of a dynamically efficient inchworm-like robot, International Journal of Robotics & Automation, 19(3), 2004, 105–110.
  21. [21] M.A.K. Jaradat, S.M. Ashour, A.A. Matalkh, et al., Biologically inspired design of a glass climbing robot for remote services, International Journal of Robotics & Automation, 25(2), 2010, 132–141.
  22. [22] P. Ciarletta, P. Dario, F. Tendick, and S. Micera, Hyperelastic model of anisotropic fiber reinforcements within intestinal walls for applications in medical robotics, International Journal of Robotics Research, 28(19), 2009, 1279–1288.
  23. [23] E. Carniel, C. Fontanella, L. Polese, S. Merigliano, et al., Computational tools for the analysis of mechanical functionality of gastrointestinal structures, Technology and Health Care, 21(2), 2013, 271–283.
  24. [24] C. Bellini, P. Glass, M. Sitti, and E. Martino, Biaxial mechanical modeling of the small intestine, Journal of Mechanical Behavior of Biomedical Materials, 4, 2011, 1727–1740.

Important Links:

Go Back