Kundong Wang, Bing Chen, and Tong Li


  1. [1] P. Dario, M.C. Carrozza, B. Allotta, and E. Guglielmelli,Micromechatronics in medicine, IEEE/ASME Transactions onMechatronics, 1(2), 1996, 137–148.
  2. [2] R. Goffredo, D. Accoto, and E. Guglielmelli, Swallowablesmart pills for local drug delivery: Present status and futureperspectives, Expert Review of Medical Devices, 12(5), 2015,584–599.
  3. [3] M. Simi, P. Valdastri, C. Quaglia, A. Menciassi, et al., Design,fabrication, and testing of a capsule with hybrid locomotion forgastrointestinal tract exploration, IEEE/ASME Transactionson Mechatronics, 15(2), 2010, 170–180.
  4. [4] G. Ciuti, P. Valdastri, A. Menclassi, and P. Dario, Roboticmagnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures, Robotica, 28(SI),2010, 199–207.
  5. [5] B. Kim, M. Lee, Y. Lee, and Y. Kim, An earthworm likemicro robot using shape memory alloy actuator, Sensors andActuators A, 125(2), 2006, 429–437.
  6. [6] B. Kim and S. Park, An earthworm-like locomotive mechanismfor capsule endoscopes, Proc. IEEE Int. Conf. Robotics andAutomation, Barcelona, Spain, 2005, 1205–1211.
  7. [7] S. Yim and M. Sitti, Design and rolling locomotion of a magnetically actuated soft capsule endoscope, IEEE Transactionson Robotics, 99(2), 2011, 1–12.
  8. [8] S. Yim and M. Sitti, 3-D localization method for a magneticallyactuated soft capsule endoscope and its applications, IEEETransactions on Robotics, 29(5), 2013, 1139–1151.
  9. [9] H. Zhou, G. Alici, T.D. Than, and W. Li, Modeling andexperimental characterization of propulsion of a spiral-type microrobot for medical use in gastrointestinal tract, IEEE Trans-actions on Biomedical Engineering, 60(6), 2013, 1751–1759.
  10. [10] Y. Kim and D. Kim, Novel propelling mechanisms basedon frictional interaction for endoscope robot, Tribology &Lubrication Technology, 69(2), 2016, 34–43.
  11. [11] H. Park, D. Kim, and B. Kim, Robotic colonoscope with longstroke and reliable leg clamping, International Journal of Precision Engineering and Manufacturing, 13(8), 2012, 1461–1466.
  12. [12] D. Zarrouk and M. Shoham, Analysis and design of one degreeof freedom worm robots for locomotion on rigid and compliantterrain, Journal of Mechanical Design, 134(2), 2012, 200–210.
  13. [13] D. Zarrouk, I. Sharf, and M. Shoham, Conditions for worm-robot locomotion in a flexible environment: theory andexperiments, IEEE Transactions on Biomedical Engineering,59(4), 2012, 1057–1067.
  14. [14] S. Kim, J. Lee, S. Hashi, and K. Ishiyama, Oscillatorymotion-based miniature magnetic walking robot actuated bya rotating magnetic field, Robotics and Autonomous Systems,60(2), 2012, 288–295.
  15. [15] L. Sliker, X. Wang, J. Schoen, and M. Rentschler, Micro-patterned treads for in-vivo robotic mobility, Journal ofMedical Devices-Transactions on the ASME, 4(4), 2010, 1–8.
  16. [16] L. Sliker and M. Rentschler, The design and characterizationof a testing platform for quantitative evaluation of tread performance on multiple biological substrates, IEEE Transactionson Biomedical Engineering, 59(9), 2012, 2524–2530.
  17. [17] T. Nakamura, Y. Hidaka, M. Yokojima, and K. Adachi,Development of peristaltic crawling robot with artificial rub-ber muscles attached to large intestine endoscope, AdvancedRobotics, 26(10), 2012, 1161–1182.
  18. [18] T. Kato, I. Okumura, S.E. Song, A.J. Golby, et al., Tendon-driven continuum robot for endoscopic surgery: preclinicaldevelopment and validation of a tension propagation model,IEEE/ASME Transactions on Mechatronics, 20(5), 2015,2252–2263.
  19. [19] S. He, G. Yan, Z. Wang, J. Gao, et al., Characteristics oflocomotion efficiency of an expanding-extending robotic endoscope in the intestinal environment, Journal of Engineeringin Medicine, 229(7), 2015, 515–523.
  20. [20] D.M. Rincon and J.M. Sotelo, Optimization in the designof a dynamically efficient inchworm-like robot, InternationalJournal of Robotics & Automation, 19(3), 2004, 105–110.
  21. [21] M.A.K. Jaradat, S.M. Ashour, A.A. Matalkh, et al., Biologically inspired design of a glass climbing robot for remoteservices, International Journal of Robotics & Automation,25(2), 2010, 132–141.
  22. [22] P. Ciarletta, P. Dario, F. Tendick, and S. Micera, Hyperelasticmodel of anisotropic fiber reinforcements within intestinal wallsfor applications in medical robotics, International Journal ofRobotics Research, 28(19), 2009, 1279–1288.
  23. [23] E. Carniel, C. Fontanella, L. Polese, S. Merigliano, et al.,Computational tools for the analysis of mechanical functionality of gastrointestinal structures, Technology and Health Care,21(2), 2013, 271–283.
  24. [24] C. Bellini, P. Glass, M. Sitti, and E. Martino, Biaxial mechanical modeling of the small intestine, Journal of MechanicalBehavior of Biomedical Materials, 4, 2011, 1727–1740.

Important Links:

Go Back