AN ADAPTIVE ILLUMINATION PREPROCESSING METHOD FOR FACE RECOGNITION

Dong Ren, Junchao Chen, Chong Zhang, Zhongtu Liu, Xiaobo Liu, and Huan Zhou

References

  1. [1] Y. Adini, Y. Moses, and S. Ullman, Face recognition: The problem of compensating for changes in illumination direction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 1997, 721–732.
  2. [2] J. Chen and B. Tiddeman, Multi-cue facial feature detection and tracking under various illuminations, International Journal of Robotics & Automation, 25(2), 2010, 162–171.
  3. [3] P.J. Phillips, W.T. Scruggs, A.J. O’Toole, et al., FRVT 2006 and ICE 2006 large-scale experimental results, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 2010, 831–846.
  4. [4] Y. Kobayashi, T. Okamoto, and M. Onishi, Generation of obstacle avoidance based on image features and embodiment, International Journal of Robotics & Automation, 27(4), 2012, 364–376.
  5. [5] J. Yang, R. Zhang, X. Wang, et al., Face illumination preprocessing algorithm based on image guided filtering, Computer Engineering, 40(4), 2014, 182–186.
  6. [6] P. Shi, X. Fan, J. Ni, et al., A detection and classification approach for underwater dam cracks, Structural Health Monitoring, 15(5), 2016, 541–554.
  7. [7] S. Shan, W. Gao, B. Cao, et al., Illumination normalization for robust face recognition against varying lighting conditions, IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures, France, 2003, 157–164.
  8. [8] R.C. Gonzalez and R.E. Woods, Digital image processing (Upper Saddle River, NJ: Pearson Prentice-Hall, 2009).
  9. [9] X. Xie and K. Lam, An efficient illumination normalization method for face recognition, Pattern Recognition Letters, 27, 2006, 609–617.
  10. [10] S. Do and K.W. Rabab, Adaptive region-based image enhancement method for robust face recognition under variable illumination conditions, IEEE Transactions on Circuits and Systems for Video Technology, 20, 2010, 1165–1175.
  11. [11] E.H. Land and J.J. Mccann, Lightness and Retinex theory, Journal of the Optical Society of America, 61, 1971, 1–11.
  12. [12] J. Liang, et al., Different lighting processing and feature extraction methods for efficient face recognition, IET Image Processing, 8, 2014, 528–538.
  13. [13] D.J. Jobson, Z.U. Rahman, and G.A. Woodell, A multiscale Retinex for bridging the gap between color images and the human observation of scenes, IEEE Transactions on Image Processing, 6, 1997, 965–976.
  14. [14] R. Gross and V. Brajovic, An image preprocessing algorithm for illumination invariant face recognition, Fourth Int. Conf. Audioand Video-Based Biometric Person Authentication, Springer Berlin Heidelberg, 2003, 10–18.
  15. [15] H. Wang, S.Z. Li, Y. Wang, et al., Generalized quotient image, IEEE Conf. Computer Vision and Pattern Recognition, Washington, 2004, 498–505.
  16. [16] W. Chen, M.J. Er, and S. Wu, Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 36, 2006, 458–466.
  17. [17] S. Naderi, J.A. Nasiri, N.M. Charkari, et al., Visual illumination compensation for face images using light mapping matrix, IET Image Processing, 7, 2013, 514–522.
  18. [18] T. Chen, W. Yin, X.S. Zhou, et al., Total variation models for variable lighting face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 2006, 1519–1524.
  19. [19] X. Xie, W.S. Zheng, J. Lai, et al., Normalization of face illumination based on large-and small-scale features, IEEE Transactions on Image Processing, 20, 2011, 1807–1821.
  20. [20] O. Arandjelovi´c and R. Cipolla, A methodology for rapid illumination-invariant face recognition using image processing filters, Computer Vision and Image Understanding, 113, 2009, 159–171.
  21. [21] H. Han, S. Shan, L. Qing, et al., Lighting aware preprocessing for face recognition across varying illumination, Eur. Conf. Computer Vision, Berlin Heidelberg, 2010, 308–321.
  22. [22] H. Sellahewa and S.A. Jassim, Image-quality-based adaptive face recognition, IEEE Transactions on Instrumentation and Measurement, 59, 2010, 805–813.
  23. [23] Z. Wang and A.C. Bovik, A universal image quality index, IEEE Signal Processing Letters, 9, 2002, 81–84.
  24. [24] D. Ren, F. Yuanyuan, D. Fangmin, et al., A robust processing chain for face recognition under varying illumination, Intelligent Automation & Soft Computing, 17, 2011, 687–699.
  25. [25] X. Zhou, W. Jiang, Y. Tian, et al., Kernel subclass convex hull sample selection method for SVM on face recognition, Neurocomputing, 73, 2010, 2234–2246
  26. [26] Y. Fang, T. Tan, and Y. Wang, Fusion of global and local features for face verification, Pattern Recognition, 2, 2002, 382–385.

Important Links:

Go Back