PREOPERATIVE SURGICAL PLANNING FOR ROBOT-ASSISTED LIVER TUMOUR ABLATION THERAPY BASED ON COLLISION-FREE REACHABLE WORKSPACES

Shaoli Liu, Jianhua Liu, Jing Xu, Xiaoyu Ding, Tong Lu, and Ken Chen

References

  1. [1] A. Jacobs, Radiofrequency ablation for liver cancer, Radiologic Technology, 86(6), 2015, 645–664.
  2. [2] J. Xu, Z.Z. Jia, Z.J. Song, X.D. Yang, et al., Three-dimensional ultrasound image-guided robotic system for accurate microwave coagulation of malignant liver tumors, International Journal of Medical Robotics and Computer Assisted Surgery, 6(3), 2010, 256–268.
  3. [3] M. Peterhans, A. vom Berg, B. Dagon, D. Inderbitzin, et al., A navigation system for open liver surgery: Design, workflow and first clinical applications, International Journal of Medical Robotics and Computer Assisted Surgery, 7(1), 2011, 7–16.
  4. [4] N. Shevchenko, B. Seidl, J. Schwaiger, M. Markert, et al., MiMed Liver: A planning system for liver surgery, 32nd Annu. Int. Conf. IEEE EMBS, Buenos Aires, 2010, 1882–1885.
  5. [5] J. Schwaiger, M. Markert, B. Seidl, N. Shevchenko, et al., Risk analysis for intraoperative liver surgery, 32nd Annu. Int. Conf. IEEE EMBS, Buenos Aires, 2010, 410–413.
  6. [6] Y.W. Chen, M. Kaibori, T. Shindo, K. Miyawaki, et al., Computer-aided liver surgical planning system using CT volumes, 32nd Annu. Int. Conf. IEEE EMBS, Osaka, 2013, 2360–2363.
  7. [7] Y. Zhong, B. Shirinzadeh, J. Smith, Soft tissue deformation with neural dynamics for surgery simulation, International Journal of Robotics & Automation, 22(1), 2007, 1–9.
  8. [8] V.M. Banz, P.C. Müller, P. Tinguely, D. Inderbitzin, et al., Intraoperative image-guided navigation system: Development and applicability in 65 patients undergoing liver surgery, Langenbeck’s Archives of Surgery, 401(4), 2016, 495–502.
  9. [9] B. Abdullah, C. Yeong, K. Goh, B. Yoong, et al., Roboticassisted thermal ablation of liver tumours, European Radiology, 25(1), 2015, 246–257.
  10. [10] M.A. Scherer and D.A. Geller, New preoperative images, surgical planning, and navigation, in Y. Fong, P. Giulianotti, J. Lewis, B. K. Groot, and T. Reiner (eds.), Imaging and Visualization in The Modern Operating Room, (New York: Springer-Verlag, 2015), 342–366.
  11. [11] B. Chebbi, D. Lazaroff, and P.X. Liu, A collaborative virtual haptic environment for surgical training and tele-mentoring, International Journal of Robotics & Automation, 22(1), 2007, 69–78.
  12. [12] S. Cristina, G. Gorka, G. Purificacion, G. Tomas, et al., Personalized surgical planning to support interventions and training of surgeons, Clinical Image-Based Procedures, Planning to Intervention Lecture Notes in Computer Science, 7761, 2013, 83–90.
  13. [13] 3D Slicer. Available at: http://www.slicer.org.
  14. [14] Available at: neromate.http://www.renishaw.com/en/neuro mate-the-no-1-image-guided-neurosurgical-robot–10712.
  15. [15] M. Hayashibe, N. Suzuki, M. Hashizume, Y. Kakeji, et al., Preoperative planning system for surgical robotics setup with kinematics and haptics, International Journal of Medical Robotics and Computer Assisted Surgery, 1(2), 2005, 76–85.
  16. [16] L.B. Rosenberg, Virtual fixtures: Perceptual tools for telerobotic manipulation, IEEE Virtual Reality Annual Int. Symp., Seattle, WA, USA, 1993, 76–82.
  17. [17] J.J. Abbott, P. Marayong, and A.M. Okamura, Haptic virtual fixtures for robot-assisted manipulation, Springer Tracts in Advanced Robotics, 28, 2007, 49–64.
  18. [18] T. Xia, A. Kapoor, P. Kazanzides, and R. Taylor, A constrained optimization approach to virtual fixtures for multirobot collaborative teleoperation, 2011 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Francisco CA, 2011, 639–644.
  19. [19] S. Park, R.D. Howe, and D.F. Torchiana, Virtual fixtures for robotic cardiac surgery, Lecture Notes in Computer Science, 2208, 2001, 1419–1420.
  20. [20] A. Kapoor, M. Li, and R.H. Taylor, Constrained control for surgical assistant robots, IEEE Int. Conf. Robotics and Automation, Orlando, 2006, 231–236.
  21. [21] B. Duan, R. Wen, C. Chng, W. Wang, et al., Image-guided robotic system for radiofrequency ablation of large liver tumor with single incision, 12th Int. Conf. Ubiquitous Robots and Ambient Intelligence, Goyang, 2015, 284–289.
  22. [22] H. Ren, E. Campos-Nanez, Z. Yaniv, F. Banovac, et al., Treatment planning and image guidance for radiofrequency ablation of large tumors, IEEE Journal of Biomedical and Health Informatics, 18(3), 2014, 920–928.
  23. [23] L. Adhami and E. Coste-Maniere, Optimal planning for minimally invasive surgical robots, IEEE Transactions on Robotics, 19(5), 2003, 854–863.
  24. [24] L. Adhami, E. Coste-Maniere, and J.D. Boissonnat, Planning and simulation of robotically assisted minimal invasive surgery, Medical Image Computing and Computer-Assisted Intervention, 1935, 2000, 624–633.
  25. [25] M. Vaillant, C. Davatzikos, R.H. Taylor, and R.N. Bryan, A path-planning algorithm for image-guided neurosurgery, Lecture Notes in Computer Science, 1205, 1997, 467–476.
  26. [26] R.R. Shamir, I. Tamir, E. Dabool, L. Joskowicz, et al., A method for planning safe trajectories in image-guided keyhole neurosurgery, Medical Image Computing and ComputerAssisted Intervention, 13(3), 2010, 457–464.
  27. [27] C. Essert, C. Haegelen, F. Lalys, A. Abadie, et al., Automatic computation of electrode trajectories for deep brain stimulation: A hybrid symbolic and numerical approach, International Journal of Computer Assisted Radiology and Surgery, 7(4), 2011, 517–532.
  28. [28] C. Baegert, C. Villard, P. Schreck, and L. Soler, Multi-criteria trajectory planning for hepatic radiofrequency ablation, Medical Image Computing and Computer-Assisted Intervention, 4792, 2007, 676–684.
  29. [29] C. Baegert, C. Villard, P. Schreck, and L. Soler, Precise determination of regions of interest for hepatic RFA planning, Studies in Health Technology and Informatics, 125, 2007, 31–36.
  30. [30] C. Villard, C. Baegert, P. Schreck, L. Soler, et al., Optimal trajectories computation within regions of interest for hepatic RFA planning, Medical Image Computing and Computer-Assisted Intervention, 8, 2005, 49–56.
  31. [31] A. Seitel, M. Engel, C.M. Sommer, B.A. Radeleff, et al., Computer-assisted trajectory planning for percutaneous needle insertions, Medical Physics, 38(6), 2011, 3246–3259.
  32. [32] C. Schumann, J. Bieberstein, C. Trumm, D. Schmidt, et al., Fast automatic path proposal computation for hepatic needle placement, Medical Imaging 2010: Visualization, ImageGuided Procedures, and Modeling, 7625, 2010, 76251J– 76251J-10.
  33. [33] C. Schumann, C. Rieder, S. Haase, K. Terchert, et al., Interactive multi-criteria planning for radiofrequency ablation, International Journal of Computer Assisted Radiology and Surgery, 10(6), 2015, 879–889.
  34. [34] A. Kapoora, M. Li, and B. Wood, Mixed variable optimization for radio frequency ablation planning, Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling, 7964, 2011, 796420-1–796420-7.
  35. [35] C.C. Chen, M.I. Miga, and R.L. Galloway Jr, Optimizing electrode placement using finite-element models in radiofrequency ablation treatment planning, IEEE Transactions on Biomedical Engineering, 56(2), 2009, 237–245.
  36. [36] S. Haase, P. Süss, J. Schwientek, K. Teichert, et al., Radiofrequency ablation planning: An application of semi-infinite modelling techniques, European Journal of Operational Research, 218(3), 2012, 856–864.
  37. [37] A. Jaberzadeh and C. Essert, Pre-operative planning of multiple probes in three dimensions for liver cryosurgery: Comparison of different optimization methods, Mathematical Methods in the Applied Sciences, 39(16), 2015, 4764–4772.
  38. [38] X. Yang, H. Wang, C. Zhang, and K. Chen, A method for mapping the boundaries of collision-free reachable workspaces, Mechanism and Machine Theory, 45(7), 2010, 1024–1033.
  39. [39] N. Chakraborty, J. Peng, S. Akella, and J.E. Mitchell, Proximity queries between convex objects: An interior point approach for implicit surfaces, IEEE Transactions on Robotics, 24(1), 2008, 211–220.
  40. [40] A.J. Hanson, Hyperquadrics: Smoothly deformable shapes with convex polyhedral bounds, Computer Vision, Graphics, and Image Processing, 44(2), 1988, 191–210.
  41. [41] S. Boyd and L. Vandenberghe, Convex optimization (Chicago: University of Chicago Press, 2004).
  42. [42] G. Taubin, Nonplanar curve and surface estimation in 3-space, IEEE Int. Conf. Robotics and Automation, Philadelphia, PA, USA, 1988, 644–645.
  43. [43] D. Keren and C. Gotsman, Fitting curves and surfaces with constrained implicit polynomials, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(1), 1999, 31–41.
  44. [44] J.E. Dennis and R.B. Jr Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, (Eaglewood Cliffs: Prentice-Hall, 1983).
  45. [45] G. Taubin, F. Cukierman, S. Sullivan, J. Ponce, et al., Parametrizing and fitting bounded algebraic curves and surfaces, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Champaign, USA, 1992, 103–108.
  46. [46] R. Byrd, J. Nocedal, and R.A. Waltz, An integrated package for nonlinear optimization: Large scale nonlinear optimization (New York: Springer-Verlag, 2006).
  47. [47] S.L. Liu, Research on multi-needle surgical planning of robotassisted microwave coagulation in liver cancer therapy, Doctoral Diss., Tsinghua University, Beijing, China, 2012 (in Chinese).
  48. [48] W.C. Rheinboldt, Numerical analysis of parameterized nonlinear equations (New York: John Wiley & Sons, 1986).
  49. [49] E.M. Boctor, M.A. Choti, E.C. Burdette, and R.J. Webster III, Three-dimensional ultrasound-guided robotic needle placement: An experimental evaluation, The International Journal of Medical Robotics and Computer Assisted Surgery, 4(2), 2008, 180–191.

Important Links:

Go Back